将高效通道关注和小规模层应用于 YOLOv5s 的麦穗检测

IF 2.2 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Journal of the Indian Society of Remote Sensing Pub Date : 2024-06-18 DOI:10.1007/s12524-024-01913-2
Feijie Dai, Yongan Xue, Linsheng Huang, Wenjiang Huang, Jinling Zhao
{"title":"将高效通道关注和小规模层应用于 YOLOv5s 的麦穗检测","authors":"Feijie Dai, Yongan Xue, Linsheng Huang, Wenjiang Huang, Jinling Zhao","doi":"10.1007/s12524-024-01913-2","DOIUrl":null,"url":null,"abstract":"<p>Wheat is a crucial global grain crop that plays a vital role in ensuring food security worldwide. The automatic and accurate counting of wheat ears is essential for assessing wheat yield. However, the detection accuracy is greatly affected by the complex background and small target size. To address these challenges and improve the performance, we propose an enhanced YOLOv5s method. In the backbone, we introduce the efficient channel attention (ECA) to enhance the feature extraction capability of the original C3 module. Additionally, we incorporate a small-scale detection layer in the neck and prediction stages. This modification expands the original three-scale feature detection (20 × 20, 40 × 40, and 80 × 80) to a four-scale feature detection (20 × 20, 40 × 40, 80 × 80, and 160 × 160), thereby enhancing the recognition accuracy of small targets. Experimental results demonstrate that our method achieves an Accuracy (Acc) of 93.97%, which represents a 2.94% improvement over the YOLOv5s. Additionally, our method has a mean absolute error (MAE) of 0.57, a reduction of 0.6 from the YOLOv5s. The Acc of the improved YOLOv5s approaches that of YOLOv7; however, the giga floating-point operations per second (GFLOPs) and inference speed of the enhanced YOLOv5s are significantly lower than those of YOLOv7. Across various phases of the wheat test dataset, the enhanced model demonstrated superior performance. As a result, the enhanced YOLOv5s enhances its suitability for challenging field conditions and offers a dependable technical framework for ear detection and wheat yield estimation.</p>","PeriodicalId":17510,"journal":{"name":"Journal of the Indian Society of Remote Sensing","volume":"31 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Efficient Channel Attention and Small-Scale Layer to YOLOv5s for Wheat Ears Detection\",\"authors\":\"Feijie Dai, Yongan Xue, Linsheng Huang, Wenjiang Huang, Jinling Zhao\",\"doi\":\"10.1007/s12524-024-01913-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wheat is a crucial global grain crop that plays a vital role in ensuring food security worldwide. The automatic and accurate counting of wheat ears is essential for assessing wheat yield. However, the detection accuracy is greatly affected by the complex background and small target size. To address these challenges and improve the performance, we propose an enhanced YOLOv5s method. In the backbone, we introduce the efficient channel attention (ECA) to enhance the feature extraction capability of the original C3 module. Additionally, we incorporate a small-scale detection layer in the neck and prediction stages. This modification expands the original three-scale feature detection (20 × 20, 40 × 40, and 80 × 80) to a four-scale feature detection (20 × 20, 40 × 40, 80 × 80, and 160 × 160), thereby enhancing the recognition accuracy of small targets. Experimental results demonstrate that our method achieves an Accuracy (Acc) of 93.97%, which represents a 2.94% improvement over the YOLOv5s. Additionally, our method has a mean absolute error (MAE) of 0.57, a reduction of 0.6 from the YOLOv5s. The Acc of the improved YOLOv5s approaches that of YOLOv7; however, the giga floating-point operations per second (GFLOPs) and inference speed of the enhanced YOLOv5s are significantly lower than those of YOLOv7. Across various phases of the wheat test dataset, the enhanced model demonstrated superior performance. As a result, the enhanced YOLOv5s enhances its suitability for challenging field conditions and offers a dependable technical framework for ear detection and wheat yield estimation.</p>\",\"PeriodicalId\":17510,\"journal\":{\"name\":\"Journal of the Indian Society of Remote Sensing\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Society of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12524-024-01913-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Society of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12524-024-01913-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

小麦是全球重要的粮食作物,在确保全球粮食安全方面发挥着至关重要的作用。自动准确地计数麦穗对于评估小麦产量至关重要。然而,复杂的背景和较小的目标尺寸极大地影响了检测精度。为了应对这些挑战并提高性能,我们提出了一种增强型 YOLOv5s 方法。在主干模块中,我们引入了高效通道关注(ECA),以增强原始 C3 模块的特征提取能力。此外,我们还在颈部和预测阶段加入了小尺度检测层。这一修改将原来的三尺度特征检测(20 × 20、40 × 40 和 80 × 80)扩展为四尺度特征检测(20 × 20、40 × 40、80 × 80 和 160 × 160),从而提高了小型目标的识别准确率。实验结果表明,我们的方法达到了 93.97% 的准确率 (Acc),比 YOLOv5s 提高了 2.94%。此外,我们的方法的平均绝对误差(MAE)为 0.57,比 YOLOv5s 降低了 0.6。改进后的 YOLOv5s 的加速度接近 YOLOv7;但是,改进后的 YOLOv5s 的每秒千兆浮点运算次数(GFLOPs)和推理速度明显低于 YOLOv7。在小麦测试数据集的各个阶段,增强型模型都表现出卓越的性能。因此,增强型 YOLOv5s 增强了其在具有挑战性的田间条件下的适用性,并为麦穗检测和小麦产量估算提供了可靠的技术框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Efficient Channel Attention and Small-Scale Layer to YOLOv5s for Wheat Ears Detection

Wheat is a crucial global grain crop that plays a vital role in ensuring food security worldwide. The automatic and accurate counting of wheat ears is essential for assessing wheat yield. However, the detection accuracy is greatly affected by the complex background and small target size. To address these challenges and improve the performance, we propose an enhanced YOLOv5s method. In the backbone, we introduce the efficient channel attention (ECA) to enhance the feature extraction capability of the original C3 module. Additionally, we incorporate a small-scale detection layer in the neck and prediction stages. This modification expands the original three-scale feature detection (20 × 20, 40 × 40, and 80 × 80) to a four-scale feature detection (20 × 20, 40 × 40, 80 × 80, and 160 × 160), thereby enhancing the recognition accuracy of small targets. Experimental results demonstrate that our method achieves an Accuracy (Acc) of 93.97%, which represents a 2.94% improvement over the YOLOv5s. Additionally, our method has a mean absolute error (MAE) of 0.57, a reduction of 0.6 from the YOLOv5s. The Acc of the improved YOLOv5s approaches that of YOLOv7; however, the giga floating-point operations per second (GFLOPs) and inference speed of the enhanced YOLOv5s are significantly lower than those of YOLOv7. Across various phases of the wheat test dataset, the enhanced model demonstrated superior performance. As a result, the enhanced YOLOv5s enhances its suitability for challenging field conditions and offers a dependable technical framework for ear detection and wheat yield estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Indian Society of Remote Sensing
Journal of the Indian Society of Remote Sensing ENVIRONMENTAL SCIENCES-REMOTE SENSING
CiteScore
4.80
自引率
8.00%
发文量
163
审稿时长
7 months
期刊介绍: The aims and scope of the Journal of the Indian Society of Remote Sensing are to help towards advancement, dissemination and application of the knowledge of Remote Sensing technology, which is deemed to include photo interpretation, photogrammetry, aerial photography, image processing, and other related technologies in the field of survey, planning and management of natural resources and other areas of application where the technology is considered to be appropriate, to promote interaction among all persons, bodies, institutions (private and/or state-owned) and industries interested in achieving advancement, dissemination and application of the technology, to encourage and undertake research in remote sensing and related technologies and to undertake and execute all acts which shall promote all or any of the aims and objectives of the Indian Society of Remote Sensing.
期刊最新文献
A Heuristic Approach of Radiometric Calibration for Ocean Colour Sensors: A Case Study Using ISRO’s Ocean Colour Monitor-2 Farmland Extraction from UAV Remote Sensing Images Based on Improved SegFormer Model Self Organizing Map based Land Cover Clustering for Decision-Level Jaccard Index and Block Activity based Pan-Sharpened Images Improved Building Extraction from Remotely Sensed Images by Integration of Encode–Decoder and Edge Enhancement Models Enhancing Change Detection Accuracy in Remote Sensing Images Through Feature Optimization and Game Theory Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1