{"title":"基于三角函数机制的混合非洲秃鹫优化算法,用于涉及工人异质性和协作的多人拆卸线平衡","authors":"Yufan Huang, Binghai Zhou","doi":"10.1007/s10845-024-02443-x","DOIUrl":null,"url":null,"abstract":"<p>The rapid replacement of large-scale end-of-life (EOL) heavy machineries like automobiles, aircrafts and industrial robots necessitates efficient resource recovery to promote sustainable and eco-friendly manufacturing. This study therefore focuses on multi-manned disassembly lines in recycling large-scale products, bridging the gap between theory and practice. We introduce complex, safety-sensitive tasks that require collaborative efforts of multiple workers in the Multi-Manned Disassembly Line Balancing Problem (MMDLBP) for the first time. We also consider worker heterogeneity due to varying training and skills, as manual stations are inherently worker-dependent in nature. To address this Multi-Manned Disassembly Line Balancing Problem with Worker Heterogeneity and Collaboration (MMDLBP-HC), we establish a mixed-integer programming model to minimize cycle time and labor cost simultaneously. Given its NP-hard nature, we develop a Multi-Mechanism-Enhanced Bi-Objective African Vultures Optimization Algorithm (MBAVOA). It employs specified encoding with numerical branching, precedence-priority concurrent decoding, and selective opposition-based learning. We also combine trigonometric-based mechanisms with the African vulture optimization algorithm (AVOA) to enhance exploration. Additionally, adaptive neighborhood search mechanisms are tailored for inter-individual information exchange. Numerical experiments compare MBAVOA to four meta-heuristics and an exact algorithm. The results demonstrate the model accuracy and the effectiveness of the encoding and decoding mechanisms, while MBAVOA outperforms benchmark algorithms significantly. Finally, we offer managerial applications to guide practitioners in balancing plan formation and training program design.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"24 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trigonometric-based mechanisms hybridized African vulture optimization algorithm for multi-manned disassembly line balancing involving worker heterogeneity and collaboration\",\"authors\":\"Yufan Huang, Binghai Zhou\",\"doi\":\"10.1007/s10845-024-02443-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid replacement of large-scale end-of-life (EOL) heavy machineries like automobiles, aircrafts and industrial robots necessitates efficient resource recovery to promote sustainable and eco-friendly manufacturing. This study therefore focuses on multi-manned disassembly lines in recycling large-scale products, bridging the gap between theory and practice. We introduce complex, safety-sensitive tasks that require collaborative efforts of multiple workers in the Multi-Manned Disassembly Line Balancing Problem (MMDLBP) for the first time. We also consider worker heterogeneity due to varying training and skills, as manual stations are inherently worker-dependent in nature. To address this Multi-Manned Disassembly Line Balancing Problem with Worker Heterogeneity and Collaboration (MMDLBP-HC), we establish a mixed-integer programming model to minimize cycle time and labor cost simultaneously. Given its NP-hard nature, we develop a Multi-Mechanism-Enhanced Bi-Objective African Vultures Optimization Algorithm (MBAVOA). It employs specified encoding with numerical branching, precedence-priority concurrent decoding, and selective opposition-based learning. We also combine trigonometric-based mechanisms with the African vulture optimization algorithm (AVOA) to enhance exploration. Additionally, adaptive neighborhood search mechanisms are tailored for inter-individual information exchange. Numerical experiments compare MBAVOA to four meta-heuristics and an exact algorithm. The results demonstrate the model accuracy and the effectiveness of the encoding and decoding mechanisms, while MBAVOA outperforms benchmark algorithms significantly. Finally, we offer managerial applications to guide practitioners in balancing plan formation and training program design.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02443-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02443-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Trigonometric-based mechanisms hybridized African vulture optimization algorithm for multi-manned disassembly line balancing involving worker heterogeneity and collaboration
The rapid replacement of large-scale end-of-life (EOL) heavy machineries like automobiles, aircrafts and industrial robots necessitates efficient resource recovery to promote sustainable and eco-friendly manufacturing. This study therefore focuses on multi-manned disassembly lines in recycling large-scale products, bridging the gap between theory and practice. We introduce complex, safety-sensitive tasks that require collaborative efforts of multiple workers in the Multi-Manned Disassembly Line Balancing Problem (MMDLBP) for the first time. We also consider worker heterogeneity due to varying training and skills, as manual stations are inherently worker-dependent in nature. To address this Multi-Manned Disassembly Line Balancing Problem with Worker Heterogeneity and Collaboration (MMDLBP-HC), we establish a mixed-integer programming model to minimize cycle time and labor cost simultaneously. Given its NP-hard nature, we develop a Multi-Mechanism-Enhanced Bi-Objective African Vultures Optimization Algorithm (MBAVOA). It employs specified encoding with numerical branching, precedence-priority concurrent decoding, and selective opposition-based learning. We also combine trigonometric-based mechanisms with the African vulture optimization algorithm (AVOA) to enhance exploration. Additionally, adaptive neighborhood search mechanisms are tailored for inter-individual information exchange. Numerical experiments compare MBAVOA to four meta-heuristics and an exact algorithm. The results demonstrate the model accuracy and the effectiveness of the encoding and decoding mechanisms, while MBAVOA outperforms benchmark algorithms significantly. Finally, we offer managerial applications to guide practitioners in balancing plan formation and training program design.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.