Huanhuan Gao, Fang Wang, Hui Liu, Yukun Chen, Jianzhong Liu
{"title":"铝基复合推进剂中铝颗粒的团聚模型和模拟方法的研究进展与展望","authors":"Huanhuan Gao, Fang Wang, Hui Liu, Yukun Chen, Jianzhong Liu","doi":"10.1002/prep.202400056","DOIUrl":null,"url":null,"abstract":"The agglomeration of aluminum during the combustion of solid propellants considerably impacts engine operation and has been widely studied in recent years. The characteristics of aluminum agglomeration in aluminum‐based composite propellants have been studied via experiments and simulations. In this study, the agglomeration process and the characteristics of agglomerated particles are summarized. Agglomeration models and simulation methods have garnered considerable attention because they are not influenced by experimental conditions, are economical, and have minimal restrictions. Therefore, five agglomeration models and four simulation methods are introduced herein to investigate agglom eration in aluminum‐based composite propellants. By analyzing the advantages and disadvantages of these models and methods, deeper agglomeration mechanisms can be explored and new directions for suppressing agglomeration can be identified to mitigate agglomeration issues. These efforts can support and guide the design of solid rocket propellants and the safe operation of rocket engines.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress and prospects on agglomeration models and simulation methods of aluminum particles in aluminum‐based composite propellants\",\"authors\":\"Huanhuan Gao, Fang Wang, Hui Liu, Yukun Chen, Jianzhong Liu\",\"doi\":\"10.1002/prep.202400056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The agglomeration of aluminum during the combustion of solid propellants considerably impacts engine operation and has been widely studied in recent years. The characteristics of aluminum agglomeration in aluminum‐based composite propellants have been studied via experiments and simulations. In this study, the agglomeration process and the characteristics of agglomerated particles are summarized. Agglomeration models and simulation methods have garnered considerable attention because they are not influenced by experimental conditions, are economical, and have minimal restrictions. Therefore, five agglomeration models and four simulation methods are introduced herein to investigate agglom eration in aluminum‐based composite propellants. By analyzing the advantages and disadvantages of these models and methods, deeper agglomeration mechanisms can be explored and new directions for suppressing agglomeration can be identified to mitigate agglomeration issues. These efforts can support and guide the design of solid rocket propellants and the safe operation of rocket engines.\",\"PeriodicalId\":20800,\"journal\":{\"name\":\"Propellants, Explosives, Pyrotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propellants, Explosives, Pyrotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/prep.202400056\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202400056","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Research progress and prospects on agglomeration models and simulation methods of aluminum particles in aluminum‐based composite propellants
The agglomeration of aluminum during the combustion of solid propellants considerably impacts engine operation and has been widely studied in recent years. The characteristics of aluminum agglomeration in aluminum‐based composite propellants have been studied via experiments and simulations. In this study, the agglomeration process and the characteristics of agglomerated particles are summarized. Agglomeration models and simulation methods have garnered considerable attention because they are not influenced by experimental conditions, are economical, and have minimal restrictions. Therefore, five agglomeration models and four simulation methods are introduced herein to investigate agglom eration in aluminum‐based composite propellants. By analyzing the advantages and disadvantages of these models and methods, deeper agglomeration mechanisms can be explored and new directions for suppressing agglomeration can be identified to mitigate agglomeration issues. These efforts can support and guide the design of solid rocket propellants and the safe operation of rocket engines.
期刊介绍:
Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year.
PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.