Jiangang Kang, Chang-Zhi Lu, Tong-Jie Zhang and Ming Zhu
{"title":"实现对宇宙加速度的直接测量:在 FAST 上对 HI 21 厘米吸收线的试验性观测","authors":"Jiangang Kang, Chang-Zhi Lu, Tong-Jie Zhang and Ming Zhu","doi":"10.1088/1674-4527/ad48d1","DOIUrl":null,"url":null,"abstract":"This study presents results on detecting neutral atomic hydrogen (H i) 21 cm absorption in the spectrum of PKS PKS1413+13 at redshift z = 0.24670041. The observation was conducted by FAST, with a spectral resolution of 10 Hz, using 10 minutes of observing time. The global spectral profile is examined by modeling the absorption line using a single Gaussian function with a resolution of 10 kHz within a 2 MHz bandwidth. The goal is to determine the rate of the latest cosmic acceleration by directly measuring the redshift evolution of the H i 21 cm absorption line with Hubble flow toward a common background quasar over a decade or longer time span. This will serve as a detectable signal generated by the accelerated expansion of the Universe at redshift z < 1, referred to as redshift drift or the SL effect. The measured H i gas column density in this DLA system is approximately equivalent to the initial observation value, considering uncertainties of the spin temperature of a spiral host galaxy. The high signal-to-noise ratio of 57, obtained at a 10 kHz resolution, strongly supports the feasibility of using the H i 21 cm absorption line in DLA systems to accurately measure the redshift drift rate at a precision level of around 10−10 per decade.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"223 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward a Direct Measurement of the Cosmic Acceleration: The Pilot Observation of HI 21 cm Absorption Line at FAST\",\"authors\":\"Jiangang Kang, Chang-Zhi Lu, Tong-Jie Zhang and Ming Zhu\",\"doi\":\"10.1088/1674-4527/ad48d1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents results on detecting neutral atomic hydrogen (H i) 21 cm absorption in the spectrum of PKS PKS1413+13 at redshift z = 0.24670041. The observation was conducted by FAST, with a spectral resolution of 10 Hz, using 10 minutes of observing time. The global spectral profile is examined by modeling the absorption line using a single Gaussian function with a resolution of 10 kHz within a 2 MHz bandwidth. The goal is to determine the rate of the latest cosmic acceleration by directly measuring the redshift evolution of the H i 21 cm absorption line with Hubble flow toward a common background quasar over a decade or longer time span. This will serve as a detectable signal generated by the accelerated expansion of the Universe at redshift z < 1, referred to as redshift drift or the SL effect. The measured H i gas column density in this DLA system is approximately equivalent to the initial observation value, considering uncertainties of the spin temperature of a spiral host galaxy. The high signal-to-noise ratio of 57, obtained at a 10 kHz resolution, strongly supports the feasibility of using the H i 21 cm absorption line in DLA systems to accurately measure the redshift drift rate at a precision level of around 10−10 per decade.\",\"PeriodicalId\":54494,\"journal\":{\"name\":\"Research in Astronomy and Astrophysics\",\"volume\":\"223 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Astronomy and Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4527/ad48d1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad48d1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
本研究介绍了在红移 z = 0.24670041 的 PKS PKS1413+13 的光谱中探测到中性原子氢(H i)21 厘米吸收的结果。观测由 FAST 进行,光谱分辨率为 10 Hz,观测时间为 10 分钟。通过在 2 MHz 带宽内使用分辨率为 10 kHz 的单高斯函数对吸收线进行建模,对全局光谱剖面进行了研究。我们的目标是通过直接测量 H i 21 厘米吸收线的红移演变,确定最近宇宙加速的速率。这将作为红移 z < 1 时宇宙加速膨胀产生的可探测信号,即红移漂移或 SL 效应。考虑到螺旋宿主星系自旋温度的不确定性,在这个 DLA 系统中测得的 H i 气体柱密度大约相当于最初的观测值。在 10 kHz 分辨率下获得的 57 的高信噪比,有力地支持了在 DLA 系统中利用 H i 21 cm 吸收线精确测量红移漂移率的可行性,精确度约为每十年 10-10。
Toward a Direct Measurement of the Cosmic Acceleration: The Pilot Observation of HI 21 cm Absorption Line at FAST
This study presents results on detecting neutral atomic hydrogen (H i) 21 cm absorption in the spectrum of PKS PKS1413+13 at redshift z = 0.24670041. The observation was conducted by FAST, with a spectral resolution of 10 Hz, using 10 minutes of observing time. The global spectral profile is examined by modeling the absorption line using a single Gaussian function with a resolution of 10 kHz within a 2 MHz bandwidth. The goal is to determine the rate of the latest cosmic acceleration by directly measuring the redshift evolution of the H i 21 cm absorption line with Hubble flow toward a common background quasar over a decade or longer time span. This will serve as a detectable signal generated by the accelerated expansion of the Universe at redshift z < 1, referred to as redshift drift or the SL effect. The measured H i gas column density in this DLA system is approximately equivalent to the initial observation value, considering uncertainties of the spin temperature of a spiral host galaxy. The high signal-to-noise ratio of 57, obtained at a 10 kHz resolution, strongly supports the feasibility of using the H i 21 cm absorption line in DLA systems to accurately measure the redshift drift rate at a precision level of around 10−10 per decade.
期刊介绍:
Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics:
-large-scale structure of universe formation and evolution of galaxies-
high-energy and cataclysmic processes in astrophysics-
formation and evolution of stars-
astrogeodynamics-
solar magnetic activity and heliogeospace environments-
dynamics of celestial bodies in the solar system and artificial bodies-
space observation and exploration-
new astronomical techniques and methods