Weina Dong, Jia Liu, Lifeng Chen, Wenquan Sun, Xiaozhong Pan
{"title":"Stega4NeRF:神经辐射场的封面选择隐写术","authors":"Weina Dong, Jia Liu, Lifeng Chen, Wenquan Sun, Xiaozhong Pan","doi":"10.1117/1.jei.33.3.033031","DOIUrl":null,"url":null,"abstract":"The implicit neural representation of visual data (such as images, videos, and 3D models) has become a current hotspot in computer vision research. This work proposes a cover selection steganography scheme for neural radiance fields (NeRFs). The message sender first trains an NeRF model selecting any viewpoint in 3D space as the viewpoint key Kv, to generate a unique secret viewpoint image. Subsequently, a message extractor is trained using overfitting to establish a one-to-one mapping between the secret viewpoint image and the secret message. To address the issue of securely transmitting the message extractor in traditional steganography, the message extractor is concealed within a hybrid model performing standard classification tasks. The receiver possesses a shared extractor key Ke, which is used to recover the message extractor from the hybrid model. Then the secret viewpoint image is obtained by NeRF through the viewpoint key Kv, and the secret message is extracted by inputting it into the message extractor. Experimental results demonstrate that the trained message extractor achieves high-speed steganography with a large capacity and attains a 100% message embedding. Additionally, the vast viewpoint key space of NeRF ensures the concealment of the scheme.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"81 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stega4NeRF: cover selection steganography for neural radiance fields\",\"authors\":\"Weina Dong, Jia Liu, Lifeng Chen, Wenquan Sun, Xiaozhong Pan\",\"doi\":\"10.1117/1.jei.33.3.033031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implicit neural representation of visual data (such as images, videos, and 3D models) has become a current hotspot in computer vision research. This work proposes a cover selection steganography scheme for neural radiance fields (NeRFs). The message sender first trains an NeRF model selecting any viewpoint in 3D space as the viewpoint key Kv, to generate a unique secret viewpoint image. Subsequently, a message extractor is trained using overfitting to establish a one-to-one mapping between the secret viewpoint image and the secret message. To address the issue of securely transmitting the message extractor in traditional steganography, the message extractor is concealed within a hybrid model performing standard classification tasks. The receiver possesses a shared extractor key Ke, which is used to recover the message extractor from the hybrid model. Then the secret viewpoint image is obtained by NeRF through the viewpoint key Kv, and the secret message is extracted by inputting it into the message extractor. Experimental results demonstrate that the trained message extractor achieves high-speed steganography with a large capacity and attains a 100% message embedding. Additionally, the vast viewpoint key space of NeRF ensures the concealment of the scheme.\",\"PeriodicalId\":54843,\"journal\":{\"name\":\"Journal of Electronic Imaging\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jei.33.3.033031\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.3.033031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Stega4NeRF: cover selection steganography for neural radiance fields
The implicit neural representation of visual data (such as images, videos, and 3D models) has become a current hotspot in computer vision research. This work proposes a cover selection steganography scheme for neural radiance fields (NeRFs). The message sender first trains an NeRF model selecting any viewpoint in 3D space as the viewpoint key Kv, to generate a unique secret viewpoint image. Subsequently, a message extractor is trained using overfitting to establish a one-to-one mapping between the secret viewpoint image and the secret message. To address the issue of securely transmitting the message extractor in traditional steganography, the message extractor is concealed within a hybrid model performing standard classification tasks. The receiver possesses a shared extractor key Ke, which is used to recover the message extractor from the hybrid model. Then the secret viewpoint image is obtained by NeRF through the viewpoint key Kv, and the secret message is extracted by inputting it into the message extractor. Experimental results demonstrate that the trained message extractor achieves high-speed steganography with a large capacity and attains a 100% message embedding. Additionally, the vast viewpoint key space of NeRF ensures the concealment of the scheme.
期刊介绍:
The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.