一般凸低域 SDP 问题的可行方法

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-07-01 DOI:10.1137/23m1561464
Tianyun Tang, Kim-Chuan Toh
{"title":"一般凸低域 SDP 问题的可行方法","authors":"Tianyun Tang, Kim-Chuan Toh","doi":"10.1137/23m1561464","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2169-2200, September 2024. <br/> Abstract. In this work, we consider the low-rank decomposition (SDPR) of general convex semidefinite programming (SDP) problems that contain both a positive semidefinite matrix and a nonnegative vector as variables. We develop a rank-support-adaptive feasible method to solve (SDPR) based on Riemannian optimization. The method is able to escape from a saddle point to ensure its convergence to a global optimal solution for generic constraint vectors. We prove its global convergence and local linear convergence without assuming that the objective function is twice differentiable. Due to the special structure of the low-rank SDP problem, our algorithm can achieve better iteration complexity than existing results for more general smooth nonconvex problems. In order to overcome the degeneracy issues of SDP problems, we develop two strategies based on random perturbation and dual refinement. These techniques enable us to solve some primal degenerate SDP problems efficiently, for example, Lovász theta SDPs. Our work is a step forward in extending the application range of Riemannian optimization approaches for solving SDP problems. Numerical experiments are conducted to verify the efficiency and robustness of our method.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Feasible Method for General Convex Low-Rank SDP Problems\",\"authors\":\"Tianyun Tang, Kim-Chuan Toh\",\"doi\":\"10.1137/23m1561464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2169-2200, September 2024. <br/> Abstract. In this work, we consider the low-rank decomposition (SDPR) of general convex semidefinite programming (SDP) problems that contain both a positive semidefinite matrix and a nonnegative vector as variables. We develop a rank-support-adaptive feasible method to solve (SDPR) based on Riemannian optimization. The method is able to escape from a saddle point to ensure its convergence to a global optimal solution for generic constraint vectors. We prove its global convergence and local linear convergence without assuming that the objective function is twice differentiable. Due to the special structure of the low-rank SDP problem, our algorithm can achieve better iteration complexity than existing results for more general smooth nonconvex problems. In order to overcome the degeneracy issues of SDP problems, we develop two strategies based on random perturbation and dual refinement. These techniques enable us to solve some primal degenerate SDP problems efficiently, for example, Lovász theta SDPs. Our work is a step forward in extending the application range of Riemannian optimization approaches for solving SDP problems. Numerical experiments are conducted to verify the efficiency and robustness of our method.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1561464\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1561464","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 优化期刊》,第 34 卷第 3 期,第 2169-2200 页,2024 年 9 月。 摘要在这项工作中,我们考虑了同时包含正半有限矩阵和非负向量作为变量的一般凸半有限编程(SDP)问题的低阶分解(SDPR)。我们开发了一种基于黎曼优化的秩支持自适应可行方法来求解(SDPR)。该方法能够摆脱鞍点,确保收敛到一般约束向量的全局最优解。我们证明了它的全局收敛性和局部线性收敛性,而无需假设目标函数是二次微分的。由于低阶 SDP 问题的特殊结构,我们的算法比现有的更一般的平滑非凸问题的迭代复杂度更高。为了克服 SDP 问题的退化问题,我们开发了基于随机扰动和对偶细化的两种策略。这些技术使我们能够高效地解决一些原始退化 SDP 问题,例如 Lovász theta SDP。我们的工作在扩展黎曼优化方法解决 SDP 问题的应用范围方面向前迈出了一步。我们进行了数值实验来验证我们方法的效率和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Feasible Method for General Convex Low-Rank SDP Problems
SIAM Journal on Optimization, Volume 34, Issue 3, Page 2169-2200, September 2024.
Abstract. In this work, we consider the low-rank decomposition (SDPR) of general convex semidefinite programming (SDP) problems that contain both a positive semidefinite matrix and a nonnegative vector as variables. We develop a rank-support-adaptive feasible method to solve (SDPR) based on Riemannian optimization. The method is able to escape from a saddle point to ensure its convergence to a global optimal solution for generic constraint vectors. We prove its global convergence and local linear convergence without assuming that the objective function is twice differentiable. Due to the special structure of the low-rank SDP problem, our algorithm can achieve better iteration complexity than existing results for more general smooth nonconvex problems. In order to overcome the degeneracy issues of SDP problems, we develop two strategies based on random perturbation and dual refinement. These techniques enable us to solve some primal degenerate SDP problems efficiently, for example, Lovász theta SDPs. Our work is a step forward in extending the application range of Riemannian optimization approaches for solving SDP problems. Numerical experiments are conducted to verify the efficiency and robustness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1