根据轨道碳观测站-2(OCO-2)光谱测量快速检索东亚上空的 XCO2

IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Measurement Techniques Pub Date : 2024-07-03 DOI:10.5194/amt-17-3949-2024
Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, Isamu Morino
{"title":"根据轨道碳观测站-2(OCO-2)光谱测量快速检索东亚上空的 XCO2","authors":"Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, Isamu Morino","doi":"10.5194/amt-17-3949-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The increase in greenhouse gas concentrations, particularly CO2, has significant implications for global climate patterns and various aspects of human life. Spaceborne remote sensing satellites play a crucial role in high-resolution monitoring of atmospheric CO2. However, the next generation of greenhouse gas monitoring satellites is expected to face challenges, particularly in terms of computational efficiency in atmospheric CO2 retrieval and analysis. To address these challenges, this study focuses on improving the speed of retrieving the column-averaged dry-air mole fraction of carbon dioxide (XCO2) using spectral data from the Orbiting Carbon Observatory-2 (OCO-2) satellite while still maintaining retrieval accuracy. A novel approach based on neural network (NN) models is proposed to tackle the nonlinear inversion problems associated with XCO2 retrievals. The study employs a data-driven supervised learning method and explores two distinct training strategies. Firstly, training is conducted using experimental data obtained from the inversion of the operational optimization model, which is released as the OCO-2 satellite products. Secondly, training is performed using a simulated dataset generated by an accurate forward calculation model. The inversion performance and prediction performance of the machine learning model for XCO2 are compared, analyzed, and discussed for the observed region over east Asia. The results demonstrate that the model trained on simulated data accurately predicts XCO2 in the target area. Furthermore, when compared to OCO-2 satellite product data, the developed XCO2 retrieval model not only achieves rapid predictions (<1 ms) with good accuracy (1.8 ppm or approximately 0.45 %) but also effectively captures sudden increases in XCO2 plumes near industrial emission sources. The accuracy of the machine learning model retrieval results is validated against reliable data from Total Carbon Column Observing Network (TCCON) sites, demonstrating its ability to effectively capture CO2 seasonal variations and annual growth trends.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements\",\"authors\":\"Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, Isamu Morino\",\"doi\":\"10.5194/amt-17-3949-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The increase in greenhouse gas concentrations, particularly CO2, has significant implications for global climate patterns and various aspects of human life. Spaceborne remote sensing satellites play a crucial role in high-resolution monitoring of atmospheric CO2. However, the next generation of greenhouse gas monitoring satellites is expected to face challenges, particularly in terms of computational efficiency in atmospheric CO2 retrieval and analysis. To address these challenges, this study focuses on improving the speed of retrieving the column-averaged dry-air mole fraction of carbon dioxide (XCO2) using spectral data from the Orbiting Carbon Observatory-2 (OCO-2) satellite while still maintaining retrieval accuracy. A novel approach based on neural network (NN) models is proposed to tackle the nonlinear inversion problems associated with XCO2 retrievals. The study employs a data-driven supervised learning method and explores two distinct training strategies. Firstly, training is conducted using experimental data obtained from the inversion of the operational optimization model, which is released as the OCO-2 satellite products. Secondly, training is performed using a simulated dataset generated by an accurate forward calculation model. The inversion performance and prediction performance of the machine learning model for XCO2 are compared, analyzed, and discussed for the observed region over east Asia. The results demonstrate that the model trained on simulated data accurately predicts XCO2 in the target area. Furthermore, when compared to OCO-2 satellite product data, the developed XCO2 retrieval model not only achieves rapid predictions (<1 ms) with good accuracy (1.8 ppm or approximately 0.45 %) but also effectively captures sudden increases in XCO2 plumes near industrial emission sources. The accuracy of the machine learning model retrieval results is validated against reliable data from Total Carbon Column Observing Network (TCCON) sites, demonstrating its ability to effectively capture CO2 seasonal variations and annual growth trends.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/amt-17-3949-2024\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-17-3949-2024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要温室气体浓度的增加,尤其是二氧化碳浓度的增加,对全球气候模式和人类生活的各个方面产生了重大影响。星载遥感卫星在高分辨率监测大气二氧化碳方面发挥着至关重要的作用。然而,下一代温室气体监测卫星预计将面临挑战,特别是在大气二氧化碳检索和分析的计算效率方面。为了应对这些挑战,本研究的重点是利用轨道碳观测站-2(OCO-2)卫星的光谱数据,在保持检索精度的同时,提高检索柱平均干空气二氧化碳摩尔分数(XCO2)的速度。该研究提出了一种基于神经网络 (NN) 模型的新方法,以解决与 XCO2 检索相关的非线性反演问题。研究采用了数据驱动的监督学习方法,并探索了两种不同的训练策略。首先,使用从作为 OCO-2 卫星产品发布的业务优化模型反演中获得的实验数据进行训练。其次,使用精确前向计算模型生成的模拟数据集进行训练。针对东亚上空的观测区域,比较、分析和讨论了 XCO2 机器学习模型的反演性能和预测性能。结果表明,在模拟数据上训练的模型能够准确预测目标区域的 XCO2。此外,与 OCO-2 卫星产品数据相比,所开发的 XCO2 检索模型不仅实现了快速预测(<1 毫秒)和良好的准确性(1.8 ppm 或约 0.45 %),还有效捕捉了工业排放源附近突然增加的 XCO2 烟羽。机器学习模型检索结果的准确性通过总碳柱观测网络(TCCON)站点的可靠数据进行了验证,证明其能够有效捕捉二氧化碳的季节变化和年度增长趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements
Abstract. The increase in greenhouse gas concentrations, particularly CO2, has significant implications for global climate patterns and various aspects of human life. Spaceborne remote sensing satellites play a crucial role in high-resolution monitoring of atmospheric CO2. However, the next generation of greenhouse gas monitoring satellites is expected to face challenges, particularly in terms of computational efficiency in atmospheric CO2 retrieval and analysis. To address these challenges, this study focuses on improving the speed of retrieving the column-averaged dry-air mole fraction of carbon dioxide (XCO2) using spectral data from the Orbiting Carbon Observatory-2 (OCO-2) satellite while still maintaining retrieval accuracy. A novel approach based on neural network (NN) models is proposed to tackle the nonlinear inversion problems associated with XCO2 retrievals. The study employs a data-driven supervised learning method and explores two distinct training strategies. Firstly, training is conducted using experimental data obtained from the inversion of the operational optimization model, which is released as the OCO-2 satellite products. Secondly, training is performed using a simulated dataset generated by an accurate forward calculation model. The inversion performance and prediction performance of the machine learning model for XCO2 are compared, analyzed, and discussed for the observed region over east Asia. The results demonstrate that the model trained on simulated data accurately predicts XCO2 in the target area. Furthermore, when compared to OCO-2 satellite product data, the developed XCO2 retrieval model not only achieves rapid predictions (<1 ms) with good accuracy (1.8 ppm or approximately 0.45 %) but also effectively captures sudden increases in XCO2 plumes near industrial emission sources. The accuracy of the machine learning model retrieval results is validated against reliable data from Total Carbon Column Observing Network (TCCON) sites, demonstrating its ability to effectively capture CO2 seasonal variations and annual growth trends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Measurement Techniques
Atmospheric Measurement Techniques METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
7.10
自引率
18.40%
发文量
331
审稿时长
3 months
期刊介绍: Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere. The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.
期刊最新文献
Analyzing the chemical composition, morphology and size of ice-nucleating particles by coupling a scanning electron microscope to an offline diffusion chamber Wet-Radome Attenuation in ARM Cloud Radars and Its Utilization in Radar Calibration Using Disdrometer Measurements Chilean Observation Network De MeteOr Radars (CONDOR): Multi-Static System Configuration & Wind Comparison with Co-located Lidar Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations Advances in OH reactivity instruments for airborne field measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1