{"title":"拟南芥自毒的种内变异","authors":"Mimi Byrne, Robert Warren","doi":"10.1007/s11258-024-01439-0","DOIUrl":null,"url":null,"abstract":"<p>Just as plants attack heterospecific competitors with allelopathic phytotoxins, they also attack conspecifics with phytotoxins to inhibit seedling germination and growth (autotoxicity). As a result, for many plant species, autotoxicity limits offspring germination and growth proximate to parental plants—consequently reducing deleterious density dependent effects. Autotoxicity appears to vary across species, but it also may vary within species. We tested autotoxicity and variability in six ecotypes of the model plant, <i>Arabidopsis thaliana</i>, using allelopathy bioassays<i>.</i> We found that autotoxic impacts varied across the Eurasian and African ecotypes, and the negative effects on conspecific root growth were greater from above-than belowground exudate. In half the ecotypes, root growth decreased 71% in seedlings treated with exudate from the same ecotype than when treated with exudate from other ecotypes. That the ecotypes limited themselves more than they did other ecotypes is consistent with coexistence theory, which assumes species limit themselves more than others. Moreover, it is consistent with negative density dependent theories that suggest seedling mortality is highest near conspecific adults. Finally, the variation in autotoxicity across ecotypes suggests that intraspecific genetic variability and/or local habitat influence autotoxic intensity. It is well recognized that phytotoxic effect (allelopathy and autotoxicity) varies interspecifically but ecotype-level effects suggests that plants may exhibit greater intraspecific variation in autotoxicity than currently recognized.</p>","PeriodicalId":20233,"journal":{"name":"Plant Ecology","volume":"6 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intraspecific variation in Arabidopsis thaliana autotoxicity\",\"authors\":\"Mimi Byrne, Robert Warren\",\"doi\":\"10.1007/s11258-024-01439-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Just as plants attack heterospecific competitors with allelopathic phytotoxins, they also attack conspecifics with phytotoxins to inhibit seedling germination and growth (autotoxicity). As a result, for many plant species, autotoxicity limits offspring germination and growth proximate to parental plants—consequently reducing deleterious density dependent effects. Autotoxicity appears to vary across species, but it also may vary within species. We tested autotoxicity and variability in six ecotypes of the model plant, <i>Arabidopsis thaliana</i>, using allelopathy bioassays<i>.</i> We found that autotoxic impacts varied across the Eurasian and African ecotypes, and the negative effects on conspecific root growth were greater from above-than belowground exudate. In half the ecotypes, root growth decreased 71% in seedlings treated with exudate from the same ecotype than when treated with exudate from other ecotypes. That the ecotypes limited themselves more than they did other ecotypes is consistent with coexistence theory, which assumes species limit themselves more than others. Moreover, it is consistent with negative density dependent theories that suggest seedling mortality is highest near conspecific adults. Finally, the variation in autotoxicity across ecotypes suggests that intraspecific genetic variability and/or local habitat influence autotoxic intensity. It is well recognized that phytotoxic effect (allelopathy and autotoxicity) varies interspecifically but ecotype-level effects suggests that plants may exhibit greater intraspecific variation in autotoxicity than currently recognized.</p>\",\"PeriodicalId\":20233,\"journal\":{\"name\":\"Plant Ecology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11258-024-01439-0\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11258-024-01439-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Intraspecific variation in Arabidopsis thaliana autotoxicity
Just as plants attack heterospecific competitors with allelopathic phytotoxins, they also attack conspecifics with phytotoxins to inhibit seedling germination and growth (autotoxicity). As a result, for many plant species, autotoxicity limits offspring germination and growth proximate to parental plants—consequently reducing deleterious density dependent effects. Autotoxicity appears to vary across species, but it also may vary within species. We tested autotoxicity and variability in six ecotypes of the model plant, Arabidopsis thaliana, using allelopathy bioassays. We found that autotoxic impacts varied across the Eurasian and African ecotypes, and the negative effects on conspecific root growth were greater from above-than belowground exudate. In half the ecotypes, root growth decreased 71% in seedlings treated with exudate from the same ecotype than when treated with exudate from other ecotypes. That the ecotypes limited themselves more than they did other ecotypes is consistent with coexistence theory, which assumes species limit themselves more than others. Moreover, it is consistent with negative density dependent theories that suggest seedling mortality is highest near conspecific adults. Finally, the variation in autotoxicity across ecotypes suggests that intraspecific genetic variability and/or local habitat influence autotoxic intensity. It is well recognized that phytotoxic effect (allelopathy and autotoxicity) varies interspecifically but ecotype-level effects suggests that plants may exhibit greater intraspecific variation in autotoxicity than currently recognized.
期刊介绍:
Plant Ecology publishes original scientific papers that report and interpret the findings of pure and applied research into the ecology of vascular plants in terrestrial and wetland ecosystems. Empirical, experimental, theoretical and review papers reporting on ecophysiology, population, community, ecosystem, landscape, molecular and historical ecology are within the scope of the journal.