利用时空模式预测金融资产依赖性

Haoren Zhu, Pengfei Zhao, Wilfred Siu Hung NG, Dik Lun Lee
{"title":"利用时空模式预测金融资产依赖性","authors":"Haoren Zhu, Pengfei Zhao, Wilfred Siu Hung NG, Dik Lun Lee","doi":"arxiv-2406.11886","DOIUrl":null,"url":null,"abstract":"Financial assets exhibit complex dependency structures, which are crucial for\ninvestors to create diversified portfolios to mitigate risk in volatile\nfinancial markets. To explore the financial asset dependencies dynamics, we\npropose a novel approach that models the dependencies of assets as an Asset\nDependency Matrix (ADM) and treats the ADM sequences as image sequences. This\nallows us to leverage deep learning-based video prediction methods to capture\nthe spatiotemporal dependencies among assets. However, unlike images where\nneighboring pixels exhibit explicit spatiotemporal dependencies due to the\nnatural continuity of object movements, assets in ADM do not have a natural\norder. This poses challenges to organizing the relational assets to reveal\nbetter the spatiotemporal dependencies among neighboring assets for ADM\nforecasting. To tackle the challenges, we propose the Asset Dependency Neural\nNetwork (ADNN), which employs the Convolutional Long Short-Term Memory\n(ConvLSTM) network, a highly successful method for video prediction. ADNN can\nemploy static and dynamic transformation functions to optimize the\nrepresentations of the ADM. Through extensive experiments, we demonstrate that\nour proposed framework consistently outperforms the baselines in the ADM\nprediction and downstream application tasks. This research contributes to\nunderstanding and predicting asset dependencies, offering valuable insights for\nfinancial market participants.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Financial Assets Dependency Prediction Utilizing Spatiotemporal Patterns\",\"authors\":\"Haoren Zhu, Pengfei Zhao, Wilfred Siu Hung NG, Dik Lun Lee\",\"doi\":\"arxiv-2406.11886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Financial assets exhibit complex dependency structures, which are crucial for\\ninvestors to create diversified portfolios to mitigate risk in volatile\\nfinancial markets. To explore the financial asset dependencies dynamics, we\\npropose a novel approach that models the dependencies of assets as an Asset\\nDependency Matrix (ADM) and treats the ADM sequences as image sequences. This\\nallows us to leverage deep learning-based video prediction methods to capture\\nthe spatiotemporal dependencies among assets. However, unlike images where\\nneighboring pixels exhibit explicit spatiotemporal dependencies due to the\\nnatural continuity of object movements, assets in ADM do not have a natural\\norder. This poses challenges to organizing the relational assets to reveal\\nbetter the spatiotemporal dependencies among neighboring assets for ADM\\nforecasting. To tackle the challenges, we propose the Asset Dependency Neural\\nNetwork (ADNN), which employs the Convolutional Long Short-Term Memory\\n(ConvLSTM) network, a highly successful method for video prediction. ADNN can\\nemploy static and dynamic transformation functions to optimize the\\nrepresentations of the ADM. Through extensive experiments, we demonstrate that\\nour proposed framework consistently outperforms the baselines in the ADM\\nprediction and downstream application tasks. This research contributes to\\nunderstanding and predicting asset dependencies, offering valuable insights for\\nfinancial market participants.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.11886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.11886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金融资产表现出复杂的依赖结构,这对于投资者在动荡的金融市场中建立多元化投资组合以降低风险至关重要。为了探索金融资产的依赖动态,我们提出了一种新方法,将资产依赖关系建模为资产依赖矩阵(ADM),并将 ADM 序列视为图像序列。这样,我们就可以利用基于深度学习的视频预测方法来捕捉资产之间的时空依赖关系。然而,与图像不同的是,由于物体运动的自然连续性,相邻像素表现出明确的时空依赖关系,而 ADM 中的资产没有自然顺序。这就给如何组织关联资产以更好地揭示相邻资产之间的时空依赖关系从而进行 ADM 预测带来了挑战。为了应对这些挑战,我们提出了资产依赖神经网络(Asset Dependency NeuralNetwork,ADNN),它采用了卷积长短期记忆(ConvLSTM)网络,这是一种非常成功的视频预测方法。ADNN 可以使用静态和动态变换函数来优化 ADM 的呈现。通过大量实验,我们证明了我们提出的框架在 ADM 预测和下游应用任务中始终优于基线。这项研究有助于理解和预测资产依赖关系,为金融市场参与者提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Financial Assets Dependency Prediction Utilizing Spatiotemporal Patterns
Financial assets exhibit complex dependency structures, which are crucial for investors to create diversified portfolios to mitigate risk in volatile financial markets. To explore the financial asset dependencies dynamics, we propose a novel approach that models the dependencies of assets as an Asset Dependency Matrix (ADM) and treats the ADM sequences as image sequences. This allows us to leverage deep learning-based video prediction methods to capture the spatiotemporal dependencies among assets. However, unlike images where neighboring pixels exhibit explicit spatiotemporal dependencies due to the natural continuity of object movements, assets in ADM do not have a natural order. This poses challenges to organizing the relational assets to reveal better the spatiotemporal dependencies among neighboring assets for ADM forecasting. To tackle the challenges, we propose the Asset Dependency Neural Network (ADNN), which employs the Convolutional Long Short-Term Memory (ConvLSTM) network, a highly successful method for video prediction. ADNN can employ static and dynamic transformation functions to optimize the representations of the ADM. Through extensive experiments, we demonstrate that our proposed framework consistently outperforms the baselines in the ADM prediction and downstream application tasks. This research contributes to understanding and predicting asset dependencies, offering valuable insights for financial market participants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1