EMVD 数据集:重金属音乐中使用的极端人声失真技术数据集

Modan TailleurIRIT-SAMoVA, Julien PinquierIRIT-SAMoVA, Laurent MillotACTE, Corsin VogelLS2N, Mathieu LagrangeLS2N
{"title":"EMVD 数据集:重金属音乐中使用的极端人声失真技术数据集","authors":"Modan TailleurIRIT-SAMoVA, Julien PinquierIRIT-SAMoVA, Laurent MillotACTE, Corsin VogelLS2N, Mathieu LagrangeLS2N","doi":"arxiv-2406.17732","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the Extreme Metal Vocals Dataset, which comprises\na collection of recordings of extreme vocal techniques performed within the\nrealm of heavy metal music. The dataset consists of 760 audio excerpts of 1\nsecond to 30 seconds long, totaling about 100 min of audio material, roughly\ncomposed of 60 minutes of distorted voices and 40 minutes of clear voice\nrecordings. These vocal recordings are from 27 different singers and are\nprovided without accompanying musical instruments or post-processing effects.\nThe distortion taxonomy within this dataset encompasses four distinct\ndistortion techniques and three vocal effects, all performed in different pitch\nranges. Performance of a state-of-the-art deep learning model is evaluated for\ntwo different classification tasks related to vocal techniques, demonstrating\nthe potential of this resource for the audio processing community.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EMVD dataset: a dataset of extreme vocal distortion techniques used in heavy metal\",\"authors\":\"Modan TailleurIRIT-SAMoVA, Julien PinquierIRIT-SAMoVA, Laurent MillotACTE, Corsin VogelLS2N, Mathieu LagrangeLS2N\",\"doi\":\"arxiv-2406.17732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the Extreme Metal Vocals Dataset, which comprises\\na collection of recordings of extreme vocal techniques performed within the\\nrealm of heavy metal music. The dataset consists of 760 audio excerpts of 1\\nsecond to 30 seconds long, totaling about 100 min of audio material, roughly\\ncomposed of 60 minutes of distorted voices and 40 minutes of clear voice\\nrecordings. These vocal recordings are from 27 different singers and are\\nprovided without accompanying musical instruments or post-processing effects.\\nThe distortion taxonomy within this dataset encompasses four distinct\\ndistortion techniques and three vocal effects, all performed in different pitch\\nranges. Performance of a state-of-the-art deep learning model is evaluated for\\ntwo different classification tasks related to vocal techniques, demonstrating\\nthe potential of this resource for the audio processing community.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.17732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.17732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了 "极端金属声乐数据集",该数据集收集了在重金属音乐中使用极端声乐技巧的录音。该数据集由 760 段 1 秒至 30 秒的音频摘录组成,总计约 100 分钟的音频资料,大致由 60 分钟的失真声音和 40 分钟的清晰声音录音组成。该数据集中的失真分类包括四种不同的失真技术和三种人声效果,均在不同的音高范围内进行。该数据集中的失真分类法包括四种不同的失真技术和三种声乐效果,它们都是在不同的音高范围内进行的。我们评估了最先进的深度学习模型在与声乐技术相关的两个不同分类任务中的表现,证明了该资源在音频处理领域的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EMVD dataset: a dataset of extreme vocal distortion techniques used in heavy metal
In this paper, we introduce the Extreme Metal Vocals Dataset, which comprises a collection of recordings of extreme vocal techniques performed within the realm of heavy metal music. The dataset consists of 760 audio excerpts of 1 second to 30 seconds long, totaling about 100 min of audio material, roughly composed of 60 minutes of distorted voices and 40 minutes of clear voice recordings. These vocal recordings are from 27 different singers and are provided without accompanying musical instruments or post-processing effects. The distortion taxonomy within this dataset encompasses four distinct distortion techniques and three vocal effects, all performed in different pitch ranges. Performance of a state-of-the-art deep learning model is evaluated for two different classification tasks related to vocal techniques, demonstrating the potential of this resource for the audio processing community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Unifying Action Principle for Classical Mechanical Systems Crack Dynamics in Rotating, Initially Stressed Material Strips: A Mathematical Approach Effective Youngs Modulus of Two-Phase Elastic Composites by Repeated Isostrain and Isostress Constructions and Arithmetic-Geometric Mean The principle of minimum virtual work and its application in bridge engineering Observation of exceptional points in a spherical open elastic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1