制备用于抗菌应用的 NIR-II 响应聚葡聚糖醛/明胶/金纳米粒子装饰氧化石墨烯纳米复合水凝胶

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Polymer Materials Pub Date : 2024-07-01 DOI:10.1021/acsapm.3c03228
Xi-Er Chen, Chen-Jie Yan, Cheng-Hsun Lu and Yi-Cheun Yeh*, 
{"title":"制备用于抗菌应用的 NIR-II 响应聚葡聚糖醛/明胶/金纳米粒子装饰氧化石墨烯纳米复合水凝胶","authors":"Xi-Er Chen,&nbsp;Chen-Jie Yan,&nbsp;Cheng-Hsun Lu and Yi-Cheun Yeh*,&nbsp;","doi":"10.1021/acsapm.3c03228","DOIUrl":null,"url":null,"abstract":"<p >Near-infrared (NIR)-responsive nanocomposite hydrogels are increasingly utilized in biomedical applications due to their ability to undergo remote-controlled deformation and the deep tissue penetration of NIR light. However, applying high-power lasers may cause skin injuries at the irradiation sites, raising safety concerns for clinical use. Also, the lack of dynamic features (such as self-healing) and processing capability (such as injectability) of the NIR-responsive nanocomposite hydrogels restricts their advanced applications. Here, we enhanced the photothermal efficiency of graphene oxide (GO) by attaching gold nanoparticles (AuNPs), creating a AuNP-decorated GO (GOAu). This GOAu was integrated into a thermoresponsive imine cross-linked hydrogel network made of polydextran aldehyde (PDA) and gelatin (Gel), resulting in PDA/Gel/GOAu nanocomposite hydrogels. The PDA/Gel/GOAu nanocomposite hydrogels were constructed through multiple cross-linking chemistries, including noncovalent chemistry (i.e., coordination, electrostatic interaction, and hydrogen bond) and dynamic covalent chemistry (i.e., imine bond). The structures and properties of the PDA/Gel/GOAu nanocomposite hydrogels were comprehensively investigated in comparison with the PDA/Gel hydrogels and PDA/Gel/GO nanocomposite hydrogels. Adding GOAu to the PDA/Gel network reduced the gelation time of hydrogel formation and improved the rheological and mechanical properties of the PDA/Gel network. The PDA/Gel/GOAu hydrogels exhibited a dose-dependent thermal response to NIR-II light (1064 nm), with the PDA/Gel/GOAu hydrogel containing 4 wt % GOAu achieving the highest temperature among the other hydrogels. The enhanced photothermal properties of the PDA/Gel/GOAu hydrogels were also applied in antibacterial applications based on their capability to perform thermal-induced bactericidal activity and controlled drug release under NIR-II light. Also, with their dynamic properties (i.e., NIR responsiveness, self-healing, and injectability), PDA/Gel/GOAu nanocomposite hydrogels are promising biomaterials for various applications.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsapm.3c03228","citationCount":"0","resultStr":"{\"title\":\"Fabrication of NIR-II-Responsive Polydextran Aldehyde/Gelatin/Gold Nanoparticle-Decorated Graphene Oxide Nanocomposite Hydrogels for Antibacterial Applications\",\"authors\":\"Xi-Er Chen,&nbsp;Chen-Jie Yan,&nbsp;Cheng-Hsun Lu and Yi-Cheun Yeh*,&nbsp;\",\"doi\":\"10.1021/acsapm.3c03228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Near-infrared (NIR)-responsive nanocomposite hydrogels are increasingly utilized in biomedical applications due to their ability to undergo remote-controlled deformation and the deep tissue penetration of NIR light. However, applying high-power lasers may cause skin injuries at the irradiation sites, raising safety concerns for clinical use. Also, the lack of dynamic features (such as self-healing) and processing capability (such as injectability) of the NIR-responsive nanocomposite hydrogels restricts their advanced applications. Here, we enhanced the photothermal efficiency of graphene oxide (GO) by attaching gold nanoparticles (AuNPs), creating a AuNP-decorated GO (GOAu). This GOAu was integrated into a thermoresponsive imine cross-linked hydrogel network made of polydextran aldehyde (PDA) and gelatin (Gel), resulting in PDA/Gel/GOAu nanocomposite hydrogels. The PDA/Gel/GOAu nanocomposite hydrogels were constructed through multiple cross-linking chemistries, including noncovalent chemistry (i.e., coordination, electrostatic interaction, and hydrogen bond) and dynamic covalent chemistry (i.e., imine bond). The structures and properties of the PDA/Gel/GOAu nanocomposite hydrogels were comprehensively investigated in comparison with the PDA/Gel hydrogels and PDA/Gel/GO nanocomposite hydrogels. Adding GOAu to the PDA/Gel network reduced the gelation time of hydrogel formation and improved the rheological and mechanical properties of the PDA/Gel network. The PDA/Gel/GOAu hydrogels exhibited a dose-dependent thermal response to NIR-II light (1064 nm), with the PDA/Gel/GOAu hydrogel containing 4 wt % GOAu achieving the highest temperature among the other hydrogels. The enhanced photothermal properties of the PDA/Gel/GOAu hydrogels were also applied in antibacterial applications based on their capability to perform thermal-induced bactericidal activity and controlled drug release under NIR-II light. Also, with their dynamic properties (i.e., NIR responsiveness, self-healing, and injectability), PDA/Gel/GOAu nanocomposite hydrogels are promising biomaterials for various applications.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsapm.3c03228\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.3c03228\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.3c03228","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近红外(NIR)响应纳米复合水凝胶具有遥控变形能力和 NIR 光的深层组织穿透能力,因此越来越多地应用于生物医学领域。然而,应用高功率激光可能会对照射部位的皮肤造成伤害,从而引发临床使用的安全问题。此外,近红外响应纳米复合水凝胶缺乏动态特性(如自愈合)和加工能力(如可注射性),这也限制了其高级应用。在这里,我们通过附着金纳米粒子(AuNPs)增强了氧化石墨烯(GO)的光热效率,形成了金纳米粒子装饰的 GO(GOAu)。这种 GOAu 被整合到由聚葡聚糖醛(PDA)和明胶(Gel)组成的热致伸缩性亚胺交联水凝胶网络中,形成了 PDA/Gel/GOAu 纳米复合水凝胶。PDA/Gel/GOAu 纳米复合水凝胶是通过多种交联化学方法构建的,包括非共价化学(即配位、静电作用和氢键)和动态共价化学(即亚胺键)。与 PDA/Gel 水凝胶和 PDA/Gel/GO 纳米复合水凝胶相比,对 PDA/Gel/GOAu 纳米复合水凝胶的结构和性质进行了全面研究。在 PDA/Gel 网络中添加 GOAu 缩短了水凝胶形成的凝胶化时间,并改善了 PDA/Gel 网络的流变和机械性能。PDA/Gel/GOAu 水凝胶对近红外-II 光(1064 纳米)的热反应与剂量有关,其中含有 4 wt % GOAu 的 PDA/Gel/GOAu 水凝胶的温度在其他水凝胶中最高。PDA/Gel/GOAu 水凝胶增强的光热特性还被应用于抗菌领域,因为它们在近红外-II 光下具有热诱导杀菌活性和控制药物释放的能力。此外,PDA/Gel/GOAu 纳米复合水凝胶还具有动态特性(即近红外响应性、自愈合性和可注射性),是一种具有多种应用前景的生物材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of NIR-II-Responsive Polydextran Aldehyde/Gelatin/Gold Nanoparticle-Decorated Graphene Oxide Nanocomposite Hydrogels for Antibacterial Applications

Near-infrared (NIR)-responsive nanocomposite hydrogels are increasingly utilized in biomedical applications due to their ability to undergo remote-controlled deformation and the deep tissue penetration of NIR light. However, applying high-power lasers may cause skin injuries at the irradiation sites, raising safety concerns for clinical use. Also, the lack of dynamic features (such as self-healing) and processing capability (such as injectability) of the NIR-responsive nanocomposite hydrogels restricts their advanced applications. Here, we enhanced the photothermal efficiency of graphene oxide (GO) by attaching gold nanoparticles (AuNPs), creating a AuNP-decorated GO (GOAu). This GOAu was integrated into a thermoresponsive imine cross-linked hydrogel network made of polydextran aldehyde (PDA) and gelatin (Gel), resulting in PDA/Gel/GOAu nanocomposite hydrogels. The PDA/Gel/GOAu nanocomposite hydrogels were constructed through multiple cross-linking chemistries, including noncovalent chemistry (i.e., coordination, electrostatic interaction, and hydrogen bond) and dynamic covalent chemistry (i.e., imine bond). The structures and properties of the PDA/Gel/GOAu nanocomposite hydrogels were comprehensively investigated in comparison with the PDA/Gel hydrogels and PDA/Gel/GO nanocomposite hydrogels. Adding GOAu to the PDA/Gel network reduced the gelation time of hydrogel formation and improved the rheological and mechanical properties of the PDA/Gel network. The PDA/Gel/GOAu hydrogels exhibited a dose-dependent thermal response to NIR-II light (1064 nm), with the PDA/Gel/GOAu hydrogel containing 4 wt % GOAu achieving the highest temperature among the other hydrogels. The enhanced photothermal properties of the PDA/Gel/GOAu hydrogels were also applied in antibacterial applications based on their capability to perform thermal-induced bactericidal activity and controlled drug release under NIR-II light. Also, with their dynamic properties (i.e., NIR responsiveness, self-healing, and injectability), PDA/Gel/GOAu nanocomposite hydrogels are promising biomaterials for various applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Cobaltocenium-Containing Polysiloxanes: Catalytic Synthesis, Structure, and Properties Effects of Functionalization on Photo-Actuatable Octa(dimethylsiloxy)silsesquioxane-Azobenzene Network Gels and their Substance Loading and Unloading Efficiencies Imidazolium Functionalized Copolymer Supported Solvate Ionic Liquid Based Gel Polymer Electrolyte for Lithium Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1