随机分析连续性中的交叉验证

Gabe Schumm, Sibin Yang, Anders Sandvik
{"title":"随机分析连续性中的交叉验证","authors":"Gabe Schumm, Sibin Yang, Anders Sandvik","doi":"arxiv-2406.06763","DOIUrl":null,"url":null,"abstract":"Stochastic Analytic Continuation (SAC) of Quantum Monte Carlo (QMC)\nimaginary-time correlation function data is a valuable tool in connecting\nmany-body models to experiments. Recent developments of the SAC method have\nallowed for spectral functions with sharp features, e.g. narrow peaks and\ndivergent edges, to be resolved with unprecedented fidelity. Often times, it is\nnot known what exact sharp features are present a priori, and, due to the\nill-posed nature of the analytic continuation problem, multiple spectral\nrepresentations may be acceptable. In this work, we borrow from the machine\nlearning and statistics literature and implement a cross validation technique\nto provide an unbiased method to identify the most likely spectrum. We show\nexamples using imaginary-time data generated by QMC simulations and synthetic\ndata generated from artificial spectra. Our procedure, which can be considered\na form of \"model selection,\" can be applied to a variety of numerical analytic\ncontinuation methods, beyond just SAC.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross Validation in Stochastic Analytic Continuation\",\"authors\":\"Gabe Schumm, Sibin Yang, Anders Sandvik\",\"doi\":\"arxiv-2406.06763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic Analytic Continuation (SAC) of Quantum Monte Carlo (QMC)\\nimaginary-time correlation function data is a valuable tool in connecting\\nmany-body models to experiments. Recent developments of the SAC method have\\nallowed for spectral functions with sharp features, e.g. narrow peaks and\\ndivergent edges, to be resolved with unprecedented fidelity. Often times, it is\\nnot known what exact sharp features are present a priori, and, due to the\\nill-posed nature of the analytic continuation problem, multiple spectral\\nrepresentations may be acceptable. In this work, we borrow from the machine\\nlearning and statistics literature and implement a cross validation technique\\nto provide an unbiased method to identify the most likely spectrum. We show\\nexamples using imaginary-time data generated by QMC simulations and synthetic\\ndata generated from artificial spectra. Our procedure, which can be considered\\na form of \\\"model selection,\\\" can be applied to a variety of numerical analytic\\ncontinuation methods, beyond just SAC.\",\"PeriodicalId\":501191,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.06763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.06763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子蒙特卡罗(QMC)虚时相关函数数据的随机分析续集(SAC)是连接多体模型与实验的重要工具。SAC 方法的最新发展使得具有尖锐特征(如窄峰和发散边缘)的谱函数能够以前所未有的保真度得到解析。通常情况下,我们并不预先知道存在哪些确切的尖锐特征,而且由于解析延续问题的ill-posed性质,多种光谱表示可能是可以接受的。在这项工作中,我们借鉴了机器学习和统计学文献,采用交叉验证技术,提供了一种无偏的方法来识别最可能的频谱。我们展示了使用 QMC 模拟生成的虚时间数据和人工光谱生成的合成数据的示例。我们的程序可被视为一种 "模型选择 "形式,可应用于各种数值分析连续方法,而不仅仅是 SAC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross Validation in Stochastic Analytic Continuation
Stochastic Analytic Continuation (SAC) of Quantum Monte Carlo (QMC) imaginary-time correlation function data is a valuable tool in connecting many-body models to experiments. Recent developments of the SAC method have allowed for spectral functions with sharp features, e.g. narrow peaks and divergent edges, to be resolved with unprecedented fidelity. Often times, it is not known what exact sharp features are present a priori, and, due to the ill-posed nature of the analytic continuation problem, multiple spectral representations may be acceptable. In this work, we borrow from the machine learning and statistics literature and implement a cross validation technique to provide an unbiased method to identify the most likely spectrum. We show examples using imaginary-time data generated by QMC simulations and synthetic data generated from artificial spectra. Our procedure, which can be considered a form of "model selection," can be applied to a variety of numerical analytic continuation methods, beyond just SAC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The $η_c$-meson leading-twist distribution amplitude Bootstrap-determined p-values in Lattice QCD Inverse Spin Hall Effect in Nonequilibrium Dirac Systems Induced by Anomalous Flow Imbalance Supersymmetric QCD on the lattice: Fine-tuning and counterterms for the quartic couplings Finite-size topological phases from semimetals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1