{"title":"重力星和 JWST 催化的星系形成再探","authors":"Stephen L. Adler","doi":"10.1007/s10509-024-04334-2","DOIUrl":null,"url":null,"abstract":"<div><p>We have proposed that galaxy formation is catalyzed by the collision of infalling and outstreaming particles from leaky, horizonless astrophysical black holes, most likely gravastars, and based on this gave a model for the disk galaxy scale length. In this paper we modify our original scale length formula by including an activation probability <span>\\(P\\)</span> for a collision to lead to nucleation of star formation. The revised formula extrapolates from early universe JWST data to late time data to within a factor of five, and suggests that galaxy dimensions should systematically get smaller as the observed redshift z increases. We also show that particles recycling through gravastars can lead to a reduction in the temperature of the surrounding gas, through a “heat pump” refrigeration effect. This can trigger galaxy formation through enhanced star formation in the vicinity of the gravastar.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galaxy formation catalyzed by gravastars and the JWST, revisited\",\"authors\":\"Stephen L. Adler\",\"doi\":\"10.1007/s10509-024-04334-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have proposed that galaxy formation is catalyzed by the collision of infalling and outstreaming particles from leaky, horizonless astrophysical black holes, most likely gravastars, and based on this gave a model for the disk galaxy scale length. In this paper we modify our original scale length formula by including an activation probability <span>\\\\(P\\\\)</span> for a collision to lead to nucleation of star formation. The revised formula extrapolates from early universe JWST data to late time data to within a factor of five, and suggests that galaxy dimensions should systematically get smaller as the observed redshift z increases. We also show that particles recycling through gravastars can lead to a reduction in the temperature of the surrounding gas, through a “heat pump” refrigeration effect. This can trigger galaxy formation through enhanced star formation in the vicinity of the gravastar.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"369 7\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04334-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04334-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Galaxy formation catalyzed by gravastars and the JWST, revisited
We have proposed that galaxy formation is catalyzed by the collision of infalling and outstreaming particles from leaky, horizonless astrophysical black holes, most likely gravastars, and based on this gave a model for the disk galaxy scale length. In this paper we modify our original scale length formula by including an activation probability \(P\) for a collision to lead to nucleation of star formation. The revised formula extrapolates from early universe JWST data to late time data to within a factor of five, and suggests that galaxy dimensions should systematically get smaller as the observed redshift z increases. We also show that particles recycling through gravastars can lead to a reduction in the temperature of the surrounding gas, through a “heat pump” refrigeration effect. This can trigger galaxy formation through enhanced star formation in the vicinity of the gravastar.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.