Laurenţiu Bubuianu, Julia O. Seti, Sergiu I. Vacaru, Elşen Veli Veliev
{"title":"非耦合爱因斯坦-狄拉克-麦克斯韦系统与 R 流修正的赖斯纳-诺德斯特伦黑洞和虫洞","authors":"Laurenţiu Bubuianu, Julia O. Seti, Sergiu I. Vacaru, Elşen Veli Veliev","doi":"10.1007/s10714-024-03261-5","DOIUrl":null,"url":null,"abstract":"<div><p>We elaborate on a model of nonassociative and noncommutative Einstein–Dirac–Maxwell, EDM, theory determined by star product R-flux deformations in string theory. Solutions for nonassociative EDM systems and physical properties not studied in modern physics. For modifications of the four-dimensional, 4-d, Einstein gravity, we work on conventional nonassociative 8-d phase spaces modelled as star-deformed co-tangent Lorentz bundles. Generalizing the anholonomic frame and connection deformation method, the nonassociative EDM equations are decoupled and integrated in exact and parametric quasi-stationary forms. Corresponding generic off-diagonal metrics are described by nonlinear symmetries and encode nonassociative effective sources and generating functions depending on space and momentum-like coordinates. For respective nonholonomic parameterizations, such solutions describe nonassociative deformations of the Reissner–Nordström black holes. A variant of nonassociative phase space wormhole solution with fermions possessing anisotropic polarized masses is also analyzed. We conclude that such phase space physical objects can’t be characterized using the concept of Bekenstein–Hawking entropy and show how to compute another type (modified G. Perelman ones) nonassociative geometric and statistical thermodynamic variables.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 7","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonassociative Einstein–Dirac–Maxwell systems and R-flux modified Reissner–Nordström black holes and wormholes\",\"authors\":\"Laurenţiu Bubuianu, Julia O. Seti, Sergiu I. Vacaru, Elşen Veli Veliev\",\"doi\":\"10.1007/s10714-024-03261-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We elaborate on a model of nonassociative and noncommutative Einstein–Dirac–Maxwell, EDM, theory determined by star product R-flux deformations in string theory. Solutions for nonassociative EDM systems and physical properties not studied in modern physics. For modifications of the four-dimensional, 4-d, Einstein gravity, we work on conventional nonassociative 8-d phase spaces modelled as star-deformed co-tangent Lorentz bundles. Generalizing the anholonomic frame and connection deformation method, the nonassociative EDM equations are decoupled and integrated in exact and parametric quasi-stationary forms. Corresponding generic off-diagonal metrics are described by nonlinear symmetries and encode nonassociative effective sources and generating functions depending on space and momentum-like coordinates. For respective nonholonomic parameterizations, such solutions describe nonassociative deformations of the Reissner–Nordström black holes. A variant of nonassociative phase space wormhole solution with fermions possessing anisotropic polarized masses is also analyzed. We conclude that such phase space physical objects can’t be characterized using the concept of Bekenstein–Hawking entropy and show how to compute another type (modified G. Perelman ones) nonassociative geometric and statistical thermodynamic variables.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"56 7\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-024-03261-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03261-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
我们详细阐述了弦理论中由星积 R 流变形决定的非共轭和非交换爱因斯坦-狄拉克-麦克斯韦(EDM)理论模型。非共轭 EDM 系统的解和现代物理学中未研究的物理特性。对于四维(4-d)爱因斯坦引力的修正,我们以星形变形共切洛伦兹束为模型,研究传统的非关联 8-d 相空间。通过推广符合人体工程学的框架和连接变形方法,非耦合 EDM 方程被解耦,并以精确和参数准静态形式进行积分。相应的通用非对角度量由非线性对称性描述,并根据空间和类动量坐标编码非耦合有效源和生成函数。对于各自的非整体参数化,这些解描述了赖斯纳-诺德斯特伦黑洞的非耦合变形。我们还分析了具有各向异性极化质量的费米子的非耦合相空间虫洞解决方案的变体。我们得出结论,这种相空间物理对象不能用贝肯斯坦-霍金熵的概念来表征,并展示了如何计算另一种类型(修正的 G. 佩雷尔曼类型)的非关联几何和统计热力学变量。
Nonassociative Einstein–Dirac–Maxwell systems and R-flux modified Reissner–Nordström black holes and wormholes
We elaborate on a model of nonassociative and noncommutative Einstein–Dirac–Maxwell, EDM, theory determined by star product R-flux deformations in string theory. Solutions for nonassociative EDM systems and physical properties not studied in modern physics. For modifications of the four-dimensional, 4-d, Einstein gravity, we work on conventional nonassociative 8-d phase spaces modelled as star-deformed co-tangent Lorentz bundles. Generalizing the anholonomic frame and connection deformation method, the nonassociative EDM equations are decoupled and integrated in exact and parametric quasi-stationary forms. Corresponding generic off-diagonal metrics are described by nonlinear symmetries and encode nonassociative effective sources and generating functions depending on space and momentum-like coordinates. For respective nonholonomic parameterizations, such solutions describe nonassociative deformations of the Reissner–Nordström black holes. A variant of nonassociative phase space wormhole solution with fermions possessing anisotropic polarized masses is also analyzed. We conclude that such phase space physical objects can’t be characterized using the concept of Bekenstein–Hawking entropy and show how to compute another type (modified G. Perelman ones) nonassociative geometric and statistical thermodynamic variables.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.