Pavel Lejček, Andrea Školáková, Orsolya Molnárová, Stanislav Habr, Jaroslav Čapek, Marta Čepová, Přemysl Málek
{"title":"挤压管复杂剪切过程中铝单晶的微观结构发展","authors":"Pavel Lejček, Andrea Školáková, Orsolya Molnárová, Stanislav Habr, Jaroslav Čapek, Marta Čepová, Přemysl Málek","doi":"10.1007/s11661-024-07476-8","DOIUrl":null,"url":null,"abstract":"<p>The development of the microstructure during severe plastic deformation of an aluminum single crystal by complex shearing of the extruded tube (CSET) was studied in this paper. The research has demonstrated that even in a single crystal, an ultrafine-grained microstructure can be obtained during this one-step process. The size of the grains gradually changes and reaches the minimum size on the level of 1 μm at the inner surface of the resulting tube. Simultaneously, preferential orientations in individual parts of the deformed sample change in a complex way. The main mechanism affecting the final microstructure is continuous dynamic recrystallization. The microhardness also exhibits a gradient character with higher values at the inner surface of the tube compared to its center.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Microstructure in Aluminum Single Crystal During Complex Shearing of Extruded Tube\",\"authors\":\"Pavel Lejček, Andrea Školáková, Orsolya Molnárová, Stanislav Habr, Jaroslav Čapek, Marta Čepová, Přemysl Málek\",\"doi\":\"10.1007/s11661-024-07476-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of the microstructure during severe plastic deformation of an aluminum single crystal by complex shearing of the extruded tube (CSET) was studied in this paper. The research has demonstrated that even in a single crystal, an ultrafine-grained microstructure can be obtained during this one-step process. The size of the grains gradually changes and reaches the minimum size on the level of 1 μm at the inner surface of the resulting tube. Simultaneously, preferential orientations in individual parts of the deformed sample change in a complex way. The main mechanism affecting the final microstructure is continuous dynamic recrystallization. The microhardness also exhibits a gradient character with higher values at the inner surface of the tube compared to its center.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":18504,\"journal\":{\"name\":\"Metallurgical and Materials Transactions A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11661-024-07476-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07476-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Microstructure in Aluminum Single Crystal During Complex Shearing of Extruded Tube
The development of the microstructure during severe plastic deformation of an aluminum single crystal by complex shearing of the extruded tube (CSET) was studied in this paper. The research has demonstrated that even in a single crystal, an ultrafine-grained microstructure can be obtained during this one-step process. The size of the grains gradually changes and reaches the minimum size on the level of 1 μm at the inner surface of the resulting tube. Simultaneously, preferential orientations in individual parts of the deformed sample change in a complex way. The main mechanism affecting the final microstructure is continuous dynamic recrystallization. The microhardness also exhibits a gradient character with higher values at the inner surface of the tube compared to its center.