分散式情报网络(DIN)

Abraham Nash
{"title":"分散式情报网络(DIN)","authors":"Abraham Nash","doi":"arxiv-2407.02461","DOIUrl":null,"url":null,"abstract":"Decentralized Intelligence Network (DIN) addresses the significant challenges\nof data sovereignty and AI utilization caused by the fragmentation and siloing\nof data across providers and institutions. This comprehensive framework\novercomes access barriers to scalable data sources previously hindered by silos\nby leveraging: 1) personal data stores as a prerequisite for data sovereignty;\n2) a scalable federated learning protocol implemented on a public blockchain\nfor decentralized AI training, where data remains with participants and only\nmodel parameter updates are shared; and 3) a scalable, trustless rewards\nmechanism to incentivize participation and ensure fair reward distribution.\nThis framework ensures that no entity can prevent or control access to training\non data offered by participants or determine financial benefits, as these\nprocesses operate on a public blockchain with an immutable record and without a\nthird party. It supports effective AI training, allowing participants to\nmaintain control over their data, benefit financially, and contribute to a\ndecentralized, scalable ecosystem that leverages collective AI to develop\nbeneficial algorithms.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"137 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized Intelligence Network (DIN)\",\"authors\":\"Abraham Nash\",\"doi\":\"arxiv-2407.02461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decentralized Intelligence Network (DIN) addresses the significant challenges\\nof data sovereignty and AI utilization caused by the fragmentation and siloing\\nof data across providers and institutions. This comprehensive framework\\novercomes access barriers to scalable data sources previously hindered by silos\\nby leveraging: 1) personal data stores as a prerequisite for data sovereignty;\\n2) a scalable federated learning protocol implemented on a public blockchain\\nfor decentralized AI training, where data remains with participants and only\\nmodel parameter updates are shared; and 3) a scalable, trustless rewards\\nmechanism to incentivize participation and ensure fair reward distribution.\\nThis framework ensures that no entity can prevent or control access to training\\non data offered by participants or determine financial benefits, as these\\nprocesses operate on a public blockchain with an immutable record and without a\\nthird party. It supports effective AI training, allowing participants to\\nmaintain control over their data, benefit financially, and contribute to a\\ndecentralized, scalable ecosystem that leverages collective AI to develop\\nbeneficial algorithms.\",\"PeriodicalId\":501168,\"journal\":{\"name\":\"arXiv - CS - Emerging Technologies\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.02461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

去中心化智能网络(DIN)解决了数据主权和人工智能利用方面的重大挑战,这些挑战是由不同提供商和机构之间的数据分散和孤岛化造成的。这个综合框架克服了以前因数据孤岛而造成的对可扩展数据源的访问障碍,它利用:1)个人数据存储作为数据主权的先决条件;2)在公共区块链上实施的可扩展联合学习协议,用于去中心化人工智能训练,其中数据保留在参与者手中,仅共享模型参数更新;3)可扩展、无信任的奖励机制,以激励参与并确保公平的奖励分配。该框架确保任何实体都无法阻止或控制对参与者提供的数据进行培训,也无法确定经济利益,因为这些过程是在具有不可更改记录的公共区块链上进行的,没有第三方参与。它支持有效的人工智能培训,使参与者能够控制自己的数据,获得经济利益,并为利用集体人工智能开发有益算法的去中心化、可扩展生态系统做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decentralized Intelligence Network (DIN)
Decentralized Intelligence Network (DIN) addresses the significant challenges of data sovereignty and AI utilization caused by the fragmentation and siloing of data across providers and institutions. This comprehensive framework overcomes access barriers to scalable data sources previously hindered by silos by leveraging: 1) personal data stores as a prerequisite for data sovereignty; 2) a scalable federated learning protocol implemented on a public blockchain for decentralized AI training, where data remains with participants and only model parameter updates are shared; and 3) a scalable, trustless rewards mechanism to incentivize participation and ensure fair reward distribution. This framework ensures that no entity can prevent or control access to training on data offered by participants or determine financial benefits, as these processes operate on a public blockchain with an immutable record and without a third party. It supports effective AI training, allowing participants to maintain control over their data, benefit financially, and contribute to a decentralized, scalable ecosystem that leverages collective AI to develop beneficial algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1