Jie Hu, Chuang-wei Wang, Zheng-rong Li, Han Zeng, Yi-cong Lei, Zheng-hua Tang
{"title":"含钛耐候钢在模拟海洋环境中的腐蚀行为研究","authors":"Jie Hu, Chuang-wei Wang, Zheng-rong Li, Han Zeng, Yi-cong Lei, Zheng-hua Tang","doi":"10.1007/s11661-024-07494-6","DOIUrl":null,"url":null,"abstract":"<p>The aim of this study is to evaluate the effect of titanium on the corrosion characteristics of bridge weathering steel plates in marine environments. The corrosion characteristics of steel containing different Ti additions were studied by simulating marine corrosion by cycles of the dry and wet environments. The addition of appropriate amounts of Ti can promote the production of γ-Fe<sub>2</sub>O<sub>3</sub>, which produces a protective rust layer. Steel containing 0.087 wt pct Ti, gave the best results. During long-term dry/wet cyclic corrosion experiments, the corrosion rate of the #0.087Ti steel first accelerated when a protective product layer has not completely covered the surface. The surface of the #0.087Ti steel was only fully covered after 144 hours of testing. With the further extension of periodic immersion testing the corrosion rate began to decrease gradually. After 576 hours of testing a stable protective product layer formed on the #0.087Ti steel, limiting further corrosion.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":"205 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on the Corrosion Behavior of Ti-Containing Weathering Steel in a Simulated Marine Environment\",\"authors\":\"Jie Hu, Chuang-wei Wang, Zheng-rong Li, Han Zeng, Yi-cong Lei, Zheng-hua Tang\",\"doi\":\"10.1007/s11661-024-07494-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this study is to evaluate the effect of titanium on the corrosion characteristics of bridge weathering steel plates in marine environments. The corrosion characteristics of steel containing different Ti additions were studied by simulating marine corrosion by cycles of the dry and wet environments. The addition of appropriate amounts of Ti can promote the production of γ-Fe<sub>2</sub>O<sub>3</sub>, which produces a protective rust layer. Steel containing 0.087 wt pct Ti, gave the best results. During long-term dry/wet cyclic corrosion experiments, the corrosion rate of the #0.087Ti steel first accelerated when a protective product layer has not completely covered the surface. The surface of the #0.087Ti steel was only fully covered after 144 hours of testing. With the further extension of periodic immersion testing the corrosion rate began to decrease gradually. After 576 hours of testing a stable protective product layer formed on the #0.087Ti steel, limiting further corrosion.</p>\",\"PeriodicalId\":18504,\"journal\":{\"name\":\"Metallurgical and Materials Transactions A\",\"volume\":\"205 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11661-024-07494-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07494-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在评估钛对海洋环境中桥梁耐候钢板腐蚀特性的影响。通过模拟干湿环境循环的海洋腐蚀,研究了不同钛添加量钢板的腐蚀特性。添加适量的 Ti 可以促进 γ-Fe2O3 的生成,从而产生保护性锈层。含 0.087 wt pct Ti 的钢材效果最好。在长期干/湿循环腐蚀实验中,当保护层尚未完全覆盖表面时,#0.087Ti 钢的腐蚀速度首先加快。0.087Ti 号钢的表面在测试 144 小时后才被完全覆盖。随着定期浸泡测试时间的进一步延长,腐蚀速度开始逐渐降低。测试 576 小时后,0.087Ti 号钢表面形成了稳定的产品保护层,限制了进一步的腐蚀。
A Study on the Corrosion Behavior of Ti-Containing Weathering Steel in a Simulated Marine Environment
The aim of this study is to evaluate the effect of titanium on the corrosion characteristics of bridge weathering steel plates in marine environments. The corrosion characteristics of steel containing different Ti additions were studied by simulating marine corrosion by cycles of the dry and wet environments. The addition of appropriate amounts of Ti can promote the production of γ-Fe2O3, which produces a protective rust layer. Steel containing 0.087 wt pct Ti, gave the best results. During long-term dry/wet cyclic corrosion experiments, the corrosion rate of the #0.087Ti steel first accelerated when a protective product layer has not completely covered the surface. The surface of the #0.087Ti steel was only fully covered after 144 hours of testing. With the further extension of periodic immersion testing the corrosion rate began to decrease gradually. After 576 hours of testing a stable protective product layer formed on the #0.087Ti steel, limiting further corrosion.