A. M. Smetanina, S. A. Gromov, V. A. Obolkin, T. V. Khodzher, O. I. Khuriganova
{"title":"贝加尔地区大气臭氧再分析和地面测量评估","authors":"A. M. Smetanina, S. A. Gromov, V. A. Obolkin, T. V. Khodzher, O. I. Khuriganova","doi":"10.3103/s1068373924040113","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The machine learning model used to predict ozone concentrations at the Listvyanka monitoring station in the Baikal region is described. The model was trained and verified using automatic ground-based gas analyzer ozone measurements. Random forest and boosting machine learning models were used. According to the ERA5 reanalysis, the mean absolute error of ozone values exceeds 16 ppb, and the mean percentage error is 80%. The respective errors in the ozone values calculated using machine learning models are 6.7 ppb and 29%. The results of forecasting are the most sensitive to the season, air temperature, and vegetation. The ozone values for 2017–2022 were simulated and analyzed using the trained model and reanalysis data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Atmospheric Ozone from Reanalysis and Ground-based Measurements in the Baikal Region\",\"authors\":\"A. M. Smetanina, S. A. Gromov, V. A. Obolkin, T. V. Khodzher, O. I. Khuriganova\",\"doi\":\"10.3103/s1068373924040113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The machine learning model used to predict ozone concentrations at the Listvyanka monitoring station in the Baikal region is described. The model was trained and verified using automatic ground-based gas analyzer ozone measurements. Random forest and boosting machine learning models were used. According to the ERA5 reanalysis, the mean absolute error of ozone values exceeds 16 ppb, and the mean percentage error is 80%. The respective errors in the ozone values calculated using machine learning models are 6.7 ppb and 29%. The results of forecasting are the most sensitive to the season, air temperature, and vegetation. The ozone values for 2017–2022 were simulated and analyzed using the trained model and reanalysis data.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068373924040113\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924040113","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessment of Atmospheric Ozone from Reanalysis and Ground-based Measurements in the Baikal Region
Abstract
The machine learning model used to predict ozone concentrations at the Listvyanka monitoring station in the Baikal region is described. The model was trained and verified using automatic ground-based gas analyzer ozone measurements. Random forest and boosting machine learning models were used. According to the ERA5 reanalysis, the mean absolute error of ozone values exceeds 16 ppb, and the mean percentage error is 80%. The respective errors in the ozone values calculated using machine learning models are 6.7 ppb and 29%. The results of forecasting are the most sensitive to the season, air temperature, and vegetation. The ozone values for 2017–2022 were simulated and analyzed using the trained model and reanalysis data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.