求解玻尔兹曼方程的 N 粒子数值统计算法的研究与优化

Pub Date : 2024-06-13 DOI:10.1134/s0965542524700246
G. Z. Lotova, G. A. Mikhailov, S. V. Rogasinsky
{"title":"求解玻尔兹曼方程的 N 粒子数值统计算法的研究与优化","authors":"G. Z. Lotova, G. A. Mikhailov, S. V. Rogasinsky","doi":"10.1134/s0965542524700246","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The main goal of this work is to check the hypothesis that the well-known <i>N</i>-particle statistical algorithm yields a solution estimate for the nonlinear Boltzmann equation with an <span>\\(O(1{\\text{/}}N)\\)</span> error. For this purpose, practically important optimal relations between <span>\\(N\\)</span> and the number <span>\\(n\\)</span> of sample estimate values are determined. Numerical results for a problem with a known solution confirm that the formulated estimates and conclusions are satisfactory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study and Optimization of N-Particle Numerical Statistical Algorithm for Solving the Boltzmann Equation\",\"authors\":\"G. Z. Lotova, G. A. Mikhailov, S. V. Rogasinsky\",\"doi\":\"10.1134/s0965542524700246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The main goal of this work is to check the hypothesis that the well-known <i>N</i>-particle statistical algorithm yields a solution estimate for the nonlinear Boltzmann equation with an <span>\\\\(O(1{\\\\text{/}}N)\\\\)</span> error. For this purpose, practically important optimal relations between <span>\\\\(N\\\\)</span> and the number <span>\\\\(n\\\\)</span> of sample estimate values are determined. Numerical results for a problem with a known solution confirm that the formulated estimates and conclusions are satisfactory.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 这项工作的主要目的是检验一个假设,即众所周知的N粒子统计算法可以得到误差为\(O(1{text{/}}N)\)的非线性玻尔兹曼方程的解估计值。为此,确定了 \(N\) 与样本估计值数量 \(n\) 之间的重要最优关系。一个已知解问题的数值结果证实了所提出的估计和结论是令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Study and Optimization of N-Particle Numerical Statistical Algorithm for Solving the Boltzmann Equation

Abstract

The main goal of this work is to check the hypothesis that the well-known N-particle statistical algorithm yields a solution estimate for the nonlinear Boltzmann equation with an \(O(1{\text{/}}N)\) error. For this purpose, practically important optimal relations between \(N\) and the number \(n\) of sample estimate values are determined. Numerical results for a problem with a known solution confirm that the formulated estimates and conclusions are satisfactory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1