论鲍里斯-捷奥多罗维奇-波利亚克关于梯度法收敛及其发展的一些著作

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED Computational Mathematics and Mathematical Physics Pub Date : 2024-06-07 DOI:10.1134/s0965542524700076
S. S. Ablaev, A. N. Beznosikov, A. V. Gasnikov, D. M. Dvinskikh, A. V. Lobanov, S. M. Puchinin, F. S. Stonyakin
{"title":"论鲍里斯-捷奥多罗维奇-波利亚克关于梯度法收敛及其发展的一些著作","authors":"S. S. Ablaev, A. N. Beznosikov, A. V. Gasnikov, D. M. Dvinskikh, A. V. Lobanov, S. M. Puchinin, F. S. Stonyakin","doi":"10.1134/s0965542524700076","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper presents a review of the current state of subgradient and accelerated convex optimization methods, including the cases with the presence of noise and access to various information about the objective function (function value, gradient, stochastic gradient, higher derivatives). For nonconvex problems, the Polyak–Lojasiewicz condition is considered and a review of the main results is given. The behavior of numerical methods in the presence of a sharp minimum is considered. The aim of this review is to show the influence of the works of B.T. Polyak (1935–2023) on gradient optimization methods and their surroundings on the modern development of numerical optimization methods.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":"41 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Some Works of Boris Teodorovich Polyak on the Convergence of Gradient Methods and Their Development\",\"authors\":\"S. S. Ablaev, A. N. Beznosikov, A. V. Gasnikov, D. M. Dvinskikh, A. V. Lobanov, S. M. Puchinin, F. S. Stonyakin\",\"doi\":\"10.1134/s0965542524700076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The paper presents a review of the current state of subgradient and accelerated convex optimization methods, including the cases with the presence of noise and access to various information about the objective function (function value, gradient, stochastic gradient, higher derivatives). For nonconvex problems, the Polyak–Lojasiewicz condition is considered and a review of the main results is given. The behavior of numerical methods in the presence of a sharp minimum is considered. The aim of this review is to show the influence of the works of B.T. Polyak (1935–2023) on gradient optimization methods and their surroundings on the modern development of numerical optimization methods.</p>\",\"PeriodicalId\":55230,\"journal\":{\"name\":\"Computational Mathematics and Mathematical Physics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700076\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700076","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文综述了亚梯度和加速凸优化方法的现状,包括存在噪声和获取目标函数各种信息(函数值、梯度、随机梯度、高导数)的情况。对于非凸问题,考虑了 Polyak-Lojasiewicz 条件,并对主要结果进行了综述。还考虑了数值方法在出现急剧最小值时的行为。本综述旨在说明 B.T. Polyak(1935-2023 年)的梯度优化方法及其周围环境对现代数值优化方法发展的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Some Works of Boris Teodorovich Polyak on the Convergence of Gradient Methods and Their Development

Abstract

The paper presents a review of the current state of subgradient and accelerated convex optimization methods, including the cases with the presence of noise and access to various information about the objective function (function value, gradient, stochastic gradient, higher derivatives). For nonconvex problems, the Polyak–Lojasiewicz condition is considered and a review of the main results is given. The behavior of numerical methods in the presence of a sharp minimum is considered. The aim of this review is to show the influence of the works of B.T. Polyak (1935–2023) on gradient optimization methods and their surroundings on the modern development of numerical optimization methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mathematics and Mathematical Physics
Computational Mathematics and Mathematical Physics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.50
自引率
14.30%
发文量
125
审稿时长
4-8 weeks
期刊介绍: Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.
期刊最新文献
Difference Operator Approximations on Nonstandard Rectangular Grid The MDM Algorithm and the Sylvester Problem Regularization of the Solution to Degenerate Systems of Algebraic Equations Exemplified by Identification of the Virial Equation of State of a Real Gas New Classes of Solutions of the σ-Commutation Problem ( $$\sigma \ne 0,\; \pm 1$$ ) for Toeplitz and Hankel Matrices within a Unified Approach Complex Narayana Quaternions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1