MCMC 的扩散近似值和控制变量

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED Computational Mathematics and Mathematical Physics Pub Date : 2024-06-07 DOI:10.1134/s0965542524700167
N. Brosse, A. Durmus, S. Meyn, E. Moulines, S. Samsonov
{"title":"MCMC 的扩散近似值和控制变量","authors":"N. Brosse, A. Durmus, S. Meyn, E. Moulines, S. Samsonov","doi":"10.1134/s0965542524700167","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A new method is introduced for the construction of control variates to reduce the variance of additive functionals of Markov Chain Monte Carlo (MCMC) samplers. These control variates are obtained by minimizing the asymptotic variance associated with the Langevin diffusion over a family of functions. To motivate our approach, we then show that the asymptotic variance of some well-known MCMC algorithms, including the Random Walk Metropolis and the (Metropolis) Unadjusted/Adjusted Langevin Algorithm, are well approximated by that of the Langevin diffusion. We finally theoretically justify the use of a class of linear control variates we introduce. In particular, we show that the variance of the resulting estimators is smaller, for a given computational complexity, than the standard Monte Carlo estimator. Several examples of Bayesian inference problems support our findings showing, in some cases, very significant reduction of the variance.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion Approximations and Control Variates for MCMC\",\"authors\":\"N. Brosse, A. Durmus, S. Meyn, E. Moulines, S. Samsonov\",\"doi\":\"10.1134/s0965542524700167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A new method is introduced for the construction of control variates to reduce the variance of additive functionals of Markov Chain Monte Carlo (MCMC) samplers. These control variates are obtained by minimizing the asymptotic variance associated with the Langevin diffusion over a family of functions. To motivate our approach, we then show that the asymptotic variance of some well-known MCMC algorithms, including the Random Walk Metropolis and the (Metropolis) Unadjusted/Adjusted Langevin Algorithm, are well approximated by that of the Langevin diffusion. We finally theoretically justify the use of a class of linear control variates we introduce. In particular, we show that the variance of the resulting estimators is smaller, for a given computational complexity, than the standard Monte Carlo estimator. Several examples of Bayesian inference problems support our findings showing, in some cases, very significant reduction of the variance.</p>\",\"PeriodicalId\":55230,\"journal\":{\"name\":\"Computational Mathematics and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700167\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700167","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 介绍了一种构建控制变量的新方法,以减小马尔可夫链蒙特卡罗(MCMC)采样器的加法函数方差。这些控制变量是通过最小化与函数族的朗格文扩散相关的渐近方差而获得的。为了激发我们的方法,我们随后展示了一些著名 MCMC 算法的渐近方差,包括随机漫步 Metropolis 算法和(Metropolis)未调整/调整 Langevin 算法,它们都可以很好地近似于 Langevin 扩散。最后,我们从理论上证明了使用我们引入的一类线性控制变量的合理性。特别是,我们证明了在计算复杂度给定的情况下,所产生的估计器方差小于标准蒙特卡罗估计器。几个贝叶斯推理问题的例子证明了我们的发现,在某些情况下,方差的减小非常明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diffusion Approximations and Control Variates for MCMC

Abstract

A new method is introduced for the construction of control variates to reduce the variance of additive functionals of Markov Chain Monte Carlo (MCMC) samplers. These control variates are obtained by minimizing the asymptotic variance associated with the Langevin diffusion over a family of functions. To motivate our approach, we then show that the asymptotic variance of some well-known MCMC algorithms, including the Random Walk Metropolis and the (Metropolis) Unadjusted/Adjusted Langevin Algorithm, are well approximated by that of the Langevin diffusion. We finally theoretically justify the use of a class of linear control variates we introduce. In particular, we show that the variance of the resulting estimators is smaller, for a given computational complexity, than the standard Monte Carlo estimator. Several examples of Bayesian inference problems support our findings showing, in some cases, very significant reduction of the variance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mathematics and Mathematical Physics
Computational Mathematics and Mathematical Physics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.50
自引率
14.30%
发文量
125
审稿时长
4-8 weeks
期刊介绍: Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.
期刊最新文献
Difference Operator Approximations on Nonstandard Rectangular Grid The MDM Algorithm and the Sylvester Problem Regularization of the Solution to Degenerate Systems of Algebraic Equations Exemplified by Identification of the Virial Equation of State of a Real Gas New Classes of Solutions of the σ-Commutation Problem ( $$\sigma \ne 0,\; \pm 1$$ ) for Toeplitz and Hankel Matrices within a Unified Approach Complex Narayana Quaternions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1