使用 NASICON 型 Na3V2(PO4)3 阴极的钠离子电池:扩散式和电容式 Na+ 电荷储存的定量分析

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY New Journal of Chemistry Pub Date : 2024-06-25 DOI:10.1039/D4NJ02108H
Sivasubramaniam Ragul, Annadoure Prabakaran, Elayaperumal Sujithkrishnan, Kalidoss Kannadasan and Perumal Elumalai
{"title":"使用 NASICON 型 Na3V2(PO4)3 阴极的钠离子电池:扩散式和电容式 Na+ 电荷储存的定量分析","authors":"Sivasubramaniam Ragul, Annadoure Prabakaran, Elayaperumal Sujithkrishnan, Kalidoss Kannadasan and Perumal Elumalai","doi":"10.1039/D4NJ02108H","DOIUrl":null,"url":null,"abstract":"<p >NASICON-type sodium vanadium phosphate (Na<small><sub>3</sub></small>V<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small>) as a cathode for sodium-ion batteries has attracted widespread research interest due to its high operating voltage (∼3.3 V) and stable three-dimensional structural framework. However, it suffers from low specific capacity due to its poor electronic conductivity and limited redox features. To increase the specific discharge capacity of Na<small><sub>3</sub></small>V<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small>, structural modifications are necessary. Thus, it is important to probe the influence of synthetic routes on the electrochemical performance of NASICON-type Na<small><sub>3</sub></small>V<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> (NVP). Herein, sodium vanadium phosphate was synthesized using a sol–gel method (NVP-SG) and a solid-state route (NVP-SS). NVP cathodes were tested and examined for laboratory prototype CR-2032 coin-type sodium-ion batteries. The NVP-SG cathode exhibited a passable discharge capacity of 130 mA h g<small><sup>−1</sup></small> at a 0.1C rate, whereas the NVP-SS cathode delivered a high discharge capacity of 160 mA h g<small><sup>−1</sup></small> at a 0.1C rate. The detailed charge storage modes of NVP synthesized through solid-state (NVP-SS) and sol–gel (NVP-SG) synthesis were examined by means of Dunn's analysis. Dunn's analysis confirmed that the charge storage is dominated by the diffusive mode at the peak potential region and the capacitive mode at the non-peak potential regions.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sodium-ion battery using a NASICON-type Na3V2(PO4)3 cathode: quantification of diffusive and capacitive Na+ charge storage†\",\"authors\":\"Sivasubramaniam Ragul, Annadoure Prabakaran, Elayaperumal Sujithkrishnan, Kalidoss Kannadasan and Perumal Elumalai\",\"doi\":\"10.1039/D4NJ02108H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >NASICON-type sodium vanadium phosphate (Na<small><sub>3</sub></small>V<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small>) as a cathode for sodium-ion batteries has attracted widespread research interest due to its high operating voltage (∼3.3 V) and stable three-dimensional structural framework. However, it suffers from low specific capacity due to its poor electronic conductivity and limited redox features. To increase the specific discharge capacity of Na<small><sub>3</sub></small>V<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small>, structural modifications are necessary. Thus, it is important to probe the influence of synthetic routes on the electrochemical performance of NASICON-type Na<small><sub>3</sub></small>V<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> (NVP). Herein, sodium vanadium phosphate was synthesized using a sol–gel method (NVP-SG) and a solid-state route (NVP-SS). NVP cathodes were tested and examined for laboratory prototype CR-2032 coin-type sodium-ion batteries. The NVP-SG cathode exhibited a passable discharge capacity of 130 mA h g<small><sup>−1</sup></small> at a 0.1C rate, whereas the NVP-SS cathode delivered a high discharge capacity of 160 mA h g<small><sup>−1</sup></small> at a 0.1C rate. The detailed charge storage modes of NVP synthesized through solid-state (NVP-SS) and sol–gel (NVP-SG) synthesis were examined by means of Dunn's analysis. Dunn's analysis confirmed that the charge storage is dominated by the diffusive mode at the peak potential region and the capacitive mode at the non-peak potential regions.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj02108h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj02108h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

NASICON 型磷酸钒钠(Na3V2(PO4)3)作为钠离子电池的阴极,因其较高的工作电压(∼3.3 V)和稳定的三维结构框架而引起了广泛的研究兴趣。然而,由于其电子导电性差和有限的氧化还原特性,它的比容量较低。要提高 Na3V2(PO4)3 的比放电容量,必须对其结构进行改性。因此,探究合成路线对 NASICON 型 Na3V2(PO4)3 (NVP) 电化学性能的影响非常重要。本文采用溶胶-凝胶法(NVP-SG)和固态法(NVP-SS)合成了磷酸钒钠。对实验室原型 CR-2032 纽扣型钠离子电池的 NVP 阴极进行了测试和检验。NVP-SG 阴极在 0.1C 放电速率下的放电容量为 130 mA h g-1,而 NVP-SS 阴极在 0.1C 放电速率下的放电容量高达 160 mA h g-1。通过邓恩分析法研究了固态合成(NVP-SS)和溶胶凝胶合成(NVP-SG)的 NVP 的详细电荷存储模式。邓恩分析证实,电荷存储在峰值电位区域主要是扩散模式,在非峰值电位区域主要是电容模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sodium-ion battery using a NASICON-type Na3V2(PO4)3 cathode: quantification of diffusive and capacitive Na+ charge storage†

NASICON-type sodium vanadium phosphate (Na3V2(PO4)3) as a cathode for sodium-ion batteries has attracted widespread research interest due to its high operating voltage (∼3.3 V) and stable three-dimensional structural framework. However, it suffers from low specific capacity due to its poor electronic conductivity and limited redox features. To increase the specific discharge capacity of Na3V2(PO4)3, structural modifications are necessary. Thus, it is important to probe the influence of synthetic routes on the electrochemical performance of NASICON-type Na3V2(PO4)3 (NVP). Herein, sodium vanadium phosphate was synthesized using a sol–gel method (NVP-SG) and a solid-state route (NVP-SS). NVP cathodes were tested and examined for laboratory prototype CR-2032 coin-type sodium-ion batteries. The NVP-SG cathode exhibited a passable discharge capacity of 130 mA h g−1 at a 0.1C rate, whereas the NVP-SS cathode delivered a high discharge capacity of 160 mA h g−1 at a 0.1C rate. The detailed charge storage modes of NVP synthesized through solid-state (NVP-SS) and sol–gel (NVP-SG) synthesis were examined by means of Dunn's analysis. Dunn's analysis confirmed that the charge storage is dominated by the diffusive mode at the peak potential region and the capacitive mode at the non-peak potential regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
期刊最新文献
Back cover Back cover Study on the Photo-Assisted Activation of PMS by CuMo1-xWxO4 for Degradation of Tetracycline Unveiling the Aggregation-Induced Chromic Emission of Triazine Anchored BODIPYs Correction: Fluorescence imaging of cellular GSH to reveal the hindering influence of rutin on ferroptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1