{"title":"求解布莱克-斯科尔斯方程和赫斯顿方程的理性谱配位法","authors":"Yangyang Wang, Xunxiang Guo, Ke Wang","doi":"10.1007/s10614-024-10624-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we raise a new method for numerically solving the partial differential equations (PDEs) of the Black-Scholes and Heston models, which play an important role in financial option pricing theory. Our proposed method is based on the rational spectral collocation method and the contour integral method. The presence of discontinuities in the first-order derivative of the initial condition of the PDEs prevents the spectral method from achieving high accuracy. However, the rational spectral method excels in overcoming this drawback. So we discretize the spatial variables of PDEs by rational spectral method, which yields a system of ordinary differential equations. Then we solve it by the numerical inverse Laplace transform using contour integral method. It is very important to select an appropriate parameters in the contour integral method, we revise the optimal parameters proposed by Trefethen and Weideman (Math Comput 76(259):1341–1356, 2007) in hyperbolic contour to control the effect of roundoff error. During solving the independent shifted linear systems, preconditioned Krylov subspace iteration is used to improve computational efficiency. We also compare the numerical results obtained from our proposed method with those obtained from the finite difference and spectral methods, showing its high accuracy and efficiency in pricing various financial options, including those mentioned above.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Spectral Collocation Method for Solving Black-Scholes and Heston Equations\",\"authors\":\"Yangyang Wang, Xunxiang Guo, Ke Wang\",\"doi\":\"10.1007/s10614-024-10624-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we raise a new method for numerically solving the partial differential equations (PDEs) of the Black-Scholes and Heston models, which play an important role in financial option pricing theory. Our proposed method is based on the rational spectral collocation method and the contour integral method. The presence of discontinuities in the first-order derivative of the initial condition of the PDEs prevents the spectral method from achieving high accuracy. However, the rational spectral method excels in overcoming this drawback. So we discretize the spatial variables of PDEs by rational spectral method, which yields a system of ordinary differential equations. Then we solve it by the numerical inverse Laplace transform using contour integral method. It is very important to select an appropriate parameters in the contour integral method, we revise the optimal parameters proposed by Trefethen and Weideman (Math Comput 76(259):1341–1356, 2007) in hyperbolic contour to control the effect of roundoff error. During solving the independent shifted linear systems, preconditioned Krylov subspace iteration is used to improve computational efficiency. We also compare the numerical results obtained from our proposed method with those obtained from the finite difference and spectral methods, showing its high accuracy and efficiency in pricing various financial options, including those mentioned above.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10624-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10624-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rational Spectral Collocation Method for Solving Black-Scholes and Heston Equations
In this paper, we raise a new method for numerically solving the partial differential equations (PDEs) of the Black-Scholes and Heston models, which play an important role in financial option pricing theory. Our proposed method is based on the rational spectral collocation method and the contour integral method. The presence of discontinuities in the first-order derivative of the initial condition of the PDEs prevents the spectral method from achieving high accuracy. However, the rational spectral method excels in overcoming this drawback. So we discretize the spatial variables of PDEs by rational spectral method, which yields a system of ordinary differential equations. Then we solve it by the numerical inverse Laplace transform using contour integral method. It is very important to select an appropriate parameters in the contour integral method, we revise the optimal parameters proposed by Trefethen and Weideman (Math Comput 76(259):1341–1356, 2007) in hyperbolic contour to control the effect of roundoff error. During solving the independent shifted linear systems, preconditioned Krylov subspace iteration is used to improve computational efficiency. We also compare the numerical results obtained from our proposed method with those obtained from the finite difference and spectral methods, showing its high accuracy and efficiency in pricing various financial options, including those mentioned above.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.