用熔盐蚀刻法制备耦合在 Ti3C2Tx 上的 MoS2 纳米片,以提高锂存储性能

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2024-07-03 DOI:10.1039/D4QM00388H
Shaochen Wang, Chenwei Qu, Xin Wang, Daoyong Lin, Tiantian Cao, Guoyong Huang, Shengming Xu and Jianzhong Ye
{"title":"用熔盐蚀刻法制备耦合在 Ti3C2Tx 上的 MoS2 纳米片,以提高锂存储性能","authors":"Shaochen Wang, Chenwei Qu, Xin Wang, Daoyong Lin, Tiantian Cao, Guoyong Huang, Shengming Xu and Jianzhong Ye","doi":"10.1039/D4QM00388H","DOIUrl":null,"url":null,"abstract":"<p >Molybdenum disulfide (MoS<small><sub>2</sub></small>) has great potential as an anode material for lithium-ion batteries due to its graphite-like layered structure and high specific capacity (669.0 mA h g<small><sup>−1</sup></small>). However, challenges such as volume expansion during lithium storage have impeded its utilization. The combined alteration of MoS<small><sub>2</sub></small> and MXenes has demonstrated its efficacy as a modification technique. In this study, a green and facile phase engineering strategy has been implemented for the synthesis of MoS<small><sub>2</sub></small>/Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> nanocomposites. Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> was rapidly prepared by the fluorine-free molten salt etching method, and then the MoS<small><sub>2</sub></small>/Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> composite was synthesized by the one-pot method. Fluffy and open petal-like interconnect structures were constructed by combining few-layer MoS<small><sub>2</sub></small> nanosheets with Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> substrate. The introduction of the substrate material (Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small>) provides a uniform growth platform for MoS<small><sub>2</sub></small> nanosheets, and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small>, acting as the supporting material, imparts enhanced structural stability to the composite. Theoretical calculations indicate that this configuration may result in a reduction of the diffusion energy barrier of Li<small><sup>+</sup></small> from 0.78 eV to 0.19 eV, as well as an enhanced electron transfer. This composite material exhibits enhanced capacity performance, achieving 460.6 mA h g<small><sup>−1</sup></small> at 0.1 A g<small><sup>−1</sup></small> after 100 cycles. This approach offers valuable insights into the synthesis of additional high-performance composite materials.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 17","pages":" 2905-2913"},"PeriodicalIF":6.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MoS2 nanosheets coupled on Ti3C2Tx prepared by molten salt etching for enhancing lithium storage performance†\",\"authors\":\"Shaochen Wang, Chenwei Qu, Xin Wang, Daoyong Lin, Tiantian Cao, Guoyong Huang, Shengming Xu and Jianzhong Ye\",\"doi\":\"10.1039/D4QM00388H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Molybdenum disulfide (MoS<small><sub>2</sub></small>) has great potential as an anode material for lithium-ion batteries due to its graphite-like layered structure and high specific capacity (669.0 mA h g<small><sup>−1</sup></small>). However, challenges such as volume expansion during lithium storage have impeded its utilization. The combined alteration of MoS<small><sub>2</sub></small> and MXenes has demonstrated its efficacy as a modification technique. In this study, a green and facile phase engineering strategy has been implemented for the synthesis of MoS<small><sub>2</sub></small>/Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> nanocomposites. Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> was rapidly prepared by the fluorine-free molten salt etching method, and then the MoS<small><sub>2</sub></small>/Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> composite was synthesized by the one-pot method. Fluffy and open petal-like interconnect structures were constructed by combining few-layer MoS<small><sub>2</sub></small> nanosheets with Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> substrate. The introduction of the substrate material (Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small>) provides a uniform growth platform for MoS<small><sub>2</sub></small> nanosheets, and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small>, acting as the supporting material, imparts enhanced structural stability to the composite. Theoretical calculations indicate that this configuration may result in a reduction of the diffusion energy barrier of Li<small><sup>+</sup></small> from 0.78 eV to 0.19 eV, as well as an enhanced electron transfer. This composite material exhibits enhanced capacity performance, achieving 460.6 mA h g<small><sup>−1</sup></small> at 0.1 A g<small><sup>−1</sup></small> after 100 cycles. This approach offers valuable insights into the synthesis of additional high-performance composite materials.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 17\",\"pages\":\" 2905-2913\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00388h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00388h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二硫化钼(MoS2)具有类似石墨的层状结构和高比容量(669.0 mAh-g-1),因此作为锂离子电池的负极材料具有巨大潜力。然而,锂储存过程中的体积膨胀等挑战阻碍了它的利用。MoS2 和 MXenes 的联合改变已证明了其作为一种改性技术的功效。本研究采用了一种绿色、简便的相工程策略来合成 MoS2/Ti3C2Tx 纳米复合材料。通过无氟熔盐刻蚀法快速制备了 Ti3C2Tx,然后采用一锅法合成了 MoS2/Ti3C2Tx 复合材料。通过将几层 MoS2 纳米片与 Ti3C2Tx 衬底结合,构建了蓬松开放的花瓣状互连结构。基底材料(Ti3C2Tx)的引入为 MoS2 纳米片提供了一个均匀的生长平台,而作为支撑材料的 Ti3C2Tx 则增强了复合材料的结构稳定性。理论计算表明,这种配置可将 Li+ 的扩散能垒从 0.78 eV 降低到 0.19 eV,并增强电子转移。这种复合材料显示出更强的容量性能,在 0.1 A-g-1 条件下循环 100 次后可达到 460.6 mAh-g-1。这种方法为合成其他高性能复合材料提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MoS2 nanosheets coupled on Ti3C2Tx prepared by molten salt etching for enhancing lithium storage performance†

Molybdenum disulfide (MoS2) has great potential as an anode material for lithium-ion batteries due to its graphite-like layered structure and high specific capacity (669.0 mA h g−1). However, challenges such as volume expansion during lithium storage have impeded its utilization. The combined alteration of MoS2 and MXenes has demonstrated its efficacy as a modification technique. In this study, a green and facile phase engineering strategy has been implemented for the synthesis of MoS2/Ti3C2Tx nanocomposites. Ti3C2Tx was rapidly prepared by the fluorine-free molten salt etching method, and then the MoS2/Ti3C2Tx composite was synthesized by the one-pot method. Fluffy and open petal-like interconnect structures were constructed by combining few-layer MoS2 nanosheets with Ti3C2Tx substrate. The introduction of the substrate material (Ti3C2Tx) provides a uniform growth platform for MoS2 nanosheets, and Ti3C2Tx, acting as the supporting material, imparts enhanced structural stability to the composite. Theoretical calculations indicate that this configuration may result in a reduction of the diffusion energy barrier of Li+ from 0.78 eV to 0.19 eV, as well as an enhanced electron transfer. This composite material exhibits enhanced capacity performance, achieving 460.6 mA h g−1 at 0.1 A g−1 after 100 cycles. This approach offers valuable insights into the synthesis of additional high-performance composite materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Back cover Self-assembled phthalocyanine-based nano-photosensitizers in photodynamic therapy for hypoxic tumors Back cover Retraction: A supramolecular nanotube used as a water-degradable template for the production of protein nanotubes with high thermal/chemical stabilities Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1