基于铁系列纳米材料的锂-S 电池性能改进策略和硫转化机制的研究进展

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-07-01 DOI:10.1007/s12274-024-6789-9
Ziyang Huang, Zhenghua Wang, Lei Zhou, Jun Pu
{"title":"基于铁系列纳米材料的锂-S 电池性能改进策略和硫转化机制的研究进展","authors":"Ziyang Huang, Zhenghua Wang, Lei Zhou, Jun Pu","doi":"10.1007/s12274-024-6789-9","DOIUrl":null,"url":null,"abstract":"<p>Lithium-sulfur (Li-S) batteries hold the potential to revolutionize energy storage due to the high theoretical capacity and energy density. However, the commercialization process is seriously hindered by the rapid capacity decay and low utilization of sulfur, caused by the inevitable slow dynamics and the “shuttle effect”. The incorporation of metal-based electrocatalysts into sulfur cathodes shows promise in promoting the conversion of lithium polysulfides (LiPSs), reducing the “shuttle effect”, and enhancing cell kinetics and cycle life. Among these, Fe-based materials, characterized by environmental friendliness, low cost, abundant reserves, and high activity, are extensively used in sulfur cathode modification. This article reviews the advancements of Fe-based materials in enhancing Li-S batteries in recent years. Starting from single/multi-component Fe-based metal compounds and single/bimetallic atoms, the influence of different Fe coordination environments on the conversion mechanism of LiPSs is analyzed. It is hoped that this review and the proposed prospects can further stimulate the development and application of the Fe element in Li-S batteries in the future.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress in performance improvement strategies and sulfur conversion mechanisms of Li-S batteries based on Fe series nanomaterials\",\"authors\":\"Ziyang Huang, Zhenghua Wang, Lei Zhou, Jun Pu\",\"doi\":\"10.1007/s12274-024-6789-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium-sulfur (Li-S) batteries hold the potential to revolutionize energy storage due to the high theoretical capacity and energy density. However, the commercialization process is seriously hindered by the rapid capacity decay and low utilization of sulfur, caused by the inevitable slow dynamics and the “shuttle effect”. The incorporation of metal-based electrocatalysts into sulfur cathodes shows promise in promoting the conversion of lithium polysulfides (LiPSs), reducing the “shuttle effect”, and enhancing cell kinetics and cycle life. Among these, Fe-based materials, characterized by environmental friendliness, low cost, abundant reserves, and high activity, are extensively used in sulfur cathode modification. This article reviews the advancements of Fe-based materials in enhancing Li-S batteries in recent years. Starting from single/multi-component Fe-based metal compounds and single/bimetallic atoms, the influence of different Fe coordination environments on the conversion mechanism of LiPSs is analyzed. It is hoped that this review and the proposed prospects can further stimulate the development and application of the Fe element in Li-S batteries in the future.\\n</p>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12274-024-6789-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6789-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂硫(Li-S)电池具有理论容量大、能量密度高的特点,有望彻底改变能源储存方式。然而,由于不可避免的缓慢动力学和 "穿梭效应",硫的容量衰减快、利用率低,严重阻碍了商业化进程。在硫阴极中加入金属基电催化剂有望促进多硫化锂(LiPS)的转化,减少 "穿梭效应",并提高电池动力学和循环寿命。其中,铁基材料具有环境友好、成本低、储量丰富、活性高等特点,被广泛应用于硫阴极改性。本文回顾了近年来铁基材料在增强锂离子电池方面取得的进展。文章从单组分/多组分铁基金属化合物和单原子/双金属原子入手,分析了不同铁配位环境对锂离子电池转换机制的影响。希望本文的综述和展望能进一步推动铁元素在未来锂离子电池中的发展和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research progress in performance improvement strategies and sulfur conversion mechanisms of Li-S batteries based on Fe series nanomaterials

Lithium-sulfur (Li-S) batteries hold the potential to revolutionize energy storage due to the high theoretical capacity and energy density. However, the commercialization process is seriously hindered by the rapid capacity decay and low utilization of sulfur, caused by the inevitable slow dynamics and the “shuttle effect”. The incorporation of metal-based electrocatalysts into sulfur cathodes shows promise in promoting the conversion of lithium polysulfides (LiPSs), reducing the “shuttle effect”, and enhancing cell kinetics and cycle life. Among these, Fe-based materials, characterized by environmental friendliness, low cost, abundant reserves, and high activity, are extensively used in sulfur cathode modification. This article reviews the advancements of Fe-based materials in enhancing Li-S batteries in recent years. Starting from single/multi-component Fe-based metal compounds and single/bimetallic atoms, the influence of different Fe coordination environments on the conversion mechanism of LiPSs is analyzed. It is hoped that this review and the proposed prospects can further stimulate the development and application of the Fe element in Li-S batteries in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
Synthesis, structure, and thermal expansion in CaZrF6 with two polymorphs Highly efficient photo-thermal synergistic catalysis of CO2 methanation over La1−xCexNiO3 perovskite-catalyst Advancing microarray fabrication: One-pot synthesis and high-resolution patterning of UV-crosslinkable perovskite quantum dots Materials advancements for the safety and patency of implantable cardiovascular devices A low-melting-point metal doping strategy for the synthesis of small-sized intermetallic Pt5Ce fuel cell catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1