Sergio Pablo-García, Raúl Pérez-Soto, Albert Sabadell-Rendón, Diego Garay-Ruiz, Vladyslav Nosylevskyi and Núria López
{"title":"rNets:可视化反应网络的独立软件包","authors":"Sergio Pablo-García, Raúl Pérez-Soto, Albert Sabadell-Rendón, Diego Garay-Ruiz, Vladyslav Nosylevskyi and Núria López","doi":"10.1039/D4DD00087K","DOIUrl":null,"url":null,"abstract":"<p >In the study of chemical processes, visualizing reaction networks is pivotal for identifying crucial compounds and transformations. Traditional methods, such as network schematics and reaction path linear plots, often struggle to effectively represent complex reaction networks due to their size and intricate connectivity. Alternatives capable of leading with complexity include graph methods, but they are not user-friendly, lacking simplicity and modularity, which hinders their integration with widely-used research software. This work introduces rNets an innovative tool designed for the efficient visualization of reaction networks with a user-friendly interface, modularity, and seamless integration with existing software packages. The effectiveness of rNets is demonstrated through its application in analyzing three catalytic reactions, showcasing its potential to significantly enhance research both in homogeneous and heterogeneous catalysis fields. This tool not only simplifies the visualization process but also opens new avenues for exploring complex reaction networks in diverse research contexts.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 8","pages":" 1564-1576"},"PeriodicalIF":6.2000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00087k?page=search","citationCount":"0","resultStr":"{\"title\":\"rNets: a standalone package to visualize reaction networks†\",\"authors\":\"Sergio Pablo-García, Raúl Pérez-Soto, Albert Sabadell-Rendón, Diego Garay-Ruiz, Vladyslav Nosylevskyi and Núria López\",\"doi\":\"10.1039/D4DD00087K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the study of chemical processes, visualizing reaction networks is pivotal for identifying crucial compounds and transformations. Traditional methods, such as network schematics and reaction path linear plots, often struggle to effectively represent complex reaction networks due to their size and intricate connectivity. Alternatives capable of leading with complexity include graph methods, but they are not user-friendly, lacking simplicity and modularity, which hinders their integration with widely-used research software. This work introduces rNets an innovative tool designed for the efficient visualization of reaction networks with a user-friendly interface, modularity, and seamless integration with existing software packages. The effectiveness of rNets is demonstrated through its application in analyzing three catalytic reactions, showcasing its potential to significantly enhance research both in homogeneous and heterogeneous catalysis fields. This tool not only simplifies the visualization process but also opens new avenues for exploring complex reaction networks in diverse research contexts.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 8\",\"pages\":\" 1564-1576\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00087k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00087k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00087k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
rNets: a standalone package to visualize reaction networks†
In the study of chemical processes, visualizing reaction networks is pivotal for identifying crucial compounds and transformations. Traditional methods, such as network schematics and reaction path linear plots, often struggle to effectively represent complex reaction networks due to their size and intricate connectivity. Alternatives capable of leading with complexity include graph methods, but they are not user-friendly, lacking simplicity and modularity, which hinders their integration with widely-used research software. This work introduces rNets an innovative tool designed for the efficient visualization of reaction networks with a user-friendly interface, modularity, and seamless integration with existing software packages. The effectiveness of rNets is demonstrated through its application in analyzing three catalytic reactions, showcasing its potential to significantly enhance research both in homogeneous and heterogeneous catalysis fields. This tool not only simplifies the visualization process but also opens new avenues for exploring complex reaction networks in diverse research contexts.