用于氢传感的掺钯 WO3 纳米板:实验研究和密度泛函理论调查

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-06-30 DOI:10.1021/acsanm.4c02114
Shiteng Ma, Fengjiao Chen, Yukun Liu, Hao Zhang, Peilin Jia, Dongzhi Zhang
{"title":"用于氢传感的掺钯 WO3 纳米板:实验研究和密度泛函理论调查","authors":"Shiteng Ma, Fengjiao Chen, Yukun Liu, Hao Zhang, Peilin Jia, Dongzhi Zhang","doi":"10.1021/acsanm.4c02114","DOIUrl":null,"url":null,"abstract":"In this article, a hydrogen sensor with excellent performance was synthesized using the hydrothermal method, with Pd-modified WO<sub>3</sub> nanoplates as the sensing layer. At an optimum operating temperature of 200 °C, the hydrogen gas sensing capabilities of WO<sub>3</sub> and Pd-WO<sub>3</sub> composite sensors were investigated. The findings indicate that in contrast to the WO<sub>3</sub> sensor, the Pd-WO<sub>3</sub> composite sensor exhibits superior hydrogen sensing performance, showcasing remarkable selectivity, reliable repeatability, sustained long-term stability, and quick response and recovery (8 s/10 s@100 ppm). The first-principles density functional theory was used to explain the sensing mechanism of the Pd-WO<sub>3</sub> composite. The improved sensing performance of Pd-WO<sub>3</sub> composite sensors was explained from the perspectives of the Schottky junction formed between Pd nanoparticles and WO<sub>3</sub>, the catalytic effect of metal Pd nanoparticles, and gas adsorption–desorption. This article confirms that Pd-modified WO<sub>3</sub> nanoplates are good candidates for efficient hydrogen gas sensing.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pd-Doped WO3 Nanoplates for Hydrogen Sensing: Experimental Studies and Density Functional Theory Investigations\",\"authors\":\"Shiteng Ma, Fengjiao Chen, Yukun Liu, Hao Zhang, Peilin Jia, Dongzhi Zhang\",\"doi\":\"10.1021/acsanm.4c02114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a hydrogen sensor with excellent performance was synthesized using the hydrothermal method, with Pd-modified WO<sub>3</sub> nanoplates as the sensing layer. At an optimum operating temperature of 200 °C, the hydrogen gas sensing capabilities of WO<sub>3</sub> and Pd-WO<sub>3</sub> composite sensors were investigated. The findings indicate that in contrast to the WO<sub>3</sub> sensor, the Pd-WO<sub>3</sub> composite sensor exhibits superior hydrogen sensing performance, showcasing remarkable selectivity, reliable repeatability, sustained long-term stability, and quick response and recovery (8 s/10 s@100 ppm). The first-principles density functional theory was used to explain the sensing mechanism of the Pd-WO<sub>3</sub> composite. The improved sensing performance of Pd-WO<sub>3</sub> composite sensors was explained from the perspectives of the Schottky junction formed between Pd nanoparticles and WO<sub>3</sub>, the catalytic effect of metal Pd nanoparticles, and gas adsorption–desorption. This article confirms that Pd-modified WO<sub>3</sub> nanoplates are good candidates for efficient hydrogen gas sensing.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsanm.4c02114\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsanm.4c02114","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文以 Pd 改性的 WO3 纳米板为传感层,采用水热法合成了一种性能优异的氢气传感器。在 200 °C 的最佳工作温度下,研究了 WO3 和 Pd-WO3 复合传感器的氢气传感能力。研究结果表明,与 WO3 传感器相比,Pd-WO3 复合传感器表现出更优越的氢气传感性能,具有显著的选择性、可靠的重复性、持续的长期稳定性以及快速的响应和恢复(8 s/10 s@100 ppm)。第一原理密度泛函理论用于解释 Pd-WO3 复合材料的传感机理。从 Pd 纳米颗粒与 WO3 之间形成的肖特基结、金属 Pd 纳米颗粒的催化作用以及气体吸附-解吸等角度解释了 Pd-WO3 复合传感器传感性能的提高。这篇文章证实了 Pd 改性 WO3 纳米板是高效氢气传感的良好候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pd-Doped WO3 Nanoplates for Hydrogen Sensing: Experimental Studies and Density Functional Theory Investigations
In this article, a hydrogen sensor with excellent performance was synthesized using the hydrothermal method, with Pd-modified WO3 nanoplates as the sensing layer. At an optimum operating temperature of 200 °C, the hydrogen gas sensing capabilities of WO3 and Pd-WO3 composite sensors were investigated. The findings indicate that in contrast to the WO3 sensor, the Pd-WO3 composite sensor exhibits superior hydrogen sensing performance, showcasing remarkable selectivity, reliable repeatability, sustained long-term stability, and quick response and recovery (8 s/10 s@100 ppm). The first-principles density functional theory was used to explain the sensing mechanism of the Pd-WO3 composite. The improved sensing performance of Pd-WO3 composite sensors was explained from the perspectives of the Schottky junction formed between Pd nanoparticles and WO3, the catalytic effect of metal Pd nanoparticles, and gas adsorption–desorption. This article confirms that Pd-modified WO3 nanoplates are good candidates for efficient hydrogen gas sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Nitrogen-Doped Porous Carbon with Staged Nanopore Formation for Capacitors Nickel-Embedded Carbon Nanostructures as Noble Metal-Free Catalysts for the Hydrogen Evolution Reaction High-Performance Ammonia Gas Sensor Based on a Catalytic Ruthenium- Gated Field-Effect Transistor Strong Metal–Support Interactions in Cu(I)-Dark TiO2 Nanoscale Photocatalysts Prepared by Pulsed Laser Ablation for Hydrogen Evolution Reaction Quantum Dots as an Active Reservoir for Longer Effective Lifetimes in GaAs Bulk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1