锚定在石墨烯上的掺钴硫化钒纳米棒用于高性能超级电容器

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-06-28 DOI:10.1021/acsanm.4c02250
Meng Guo*, Jia Du, Xueguo Liu, Yinghan Cao, Xuyang Li*, Keliang Wu and Zhenbo Li, 
{"title":"锚定在石墨烯上的掺钴硫化钒纳米棒用于高性能超级电容器","authors":"Meng Guo*,&nbsp;Jia Du,&nbsp;Xueguo Liu,&nbsp;Yinghan Cao,&nbsp;Xuyang Li*,&nbsp;Keliang Wu and Zhenbo Li,&nbsp;","doi":"10.1021/acsanm.4c02250","DOIUrl":null,"url":null,"abstract":"<p >Supercapacitors (SCs) have gained widespread recognition because of their advantageous power density as energy storage devices; it is still a great challenge to design a high-efficiency electrode material with outstanding energy density. In this work, nanorod-like cobalt-doped vanadium sulfide on a graphene nanosheet (Co-VS<sub>4</sub>/G) is successfully developed with a distinct nanostructure by employing a scalable solvothermal process. The morphology and structure of Co-VS<sub>4</sub>/G were explored to prove the Co doping well into the crystalline of VS<sub>4</sub> architecture. This creates more defects and brings about rich redox reactions, resulting in enhanced electrochemical performance. Noticeably, the fabricated Co-VS<sub>4</sub>/G composite exhibits a specific capacitance of 1230 F g<sup>–1</sup> at 1 A g<sup>–1</sup> with a rate capability of 796 F g<sup>–1</sup> at a current density value of 30 A g<sup>–1</sup> and cycling performance with 88.9% retention of its initial capacitance after 10,000 cycles. Furthermore, the as-fabricated Co-VS<sub>4</sub>/G//rGO asymmetric supercapacitor (ASC) device presents an energy density value of 75.8 W h kg<sup>–1</sup> at a power density of 0.791 kW kg<sup>–1</sup> and cycling stability with 91.1% of its capacitance following 10,000 cycles. The performance of the rodlike Co-VS<sub>4</sub>/G composite shows a predominant advantage toward the development of effective energy storage systems.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cobalt-Doped Vanadium Sulfide Nanorods Anchored on Graphene for High-Performance Supercapacitors\",\"authors\":\"Meng Guo*,&nbsp;Jia Du,&nbsp;Xueguo Liu,&nbsp;Yinghan Cao,&nbsp;Xuyang Li*,&nbsp;Keliang Wu and Zhenbo Li,&nbsp;\",\"doi\":\"10.1021/acsanm.4c02250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Supercapacitors (SCs) have gained widespread recognition because of their advantageous power density as energy storage devices; it is still a great challenge to design a high-efficiency electrode material with outstanding energy density. In this work, nanorod-like cobalt-doped vanadium sulfide on a graphene nanosheet (Co-VS<sub>4</sub>/G) is successfully developed with a distinct nanostructure by employing a scalable solvothermal process. The morphology and structure of Co-VS<sub>4</sub>/G were explored to prove the Co doping well into the crystalline of VS<sub>4</sub> architecture. This creates more defects and brings about rich redox reactions, resulting in enhanced electrochemical performance. Noticeably, the fabricated Co-VS<sub>4</sub>/G composite exhibits a specific capacitance of 1230 F g<sup>–1</sup> at 1 A g<sup>–1</sup> with a rate capability of 796 F g<sup>–1</sup> at a current density value of 30 A g<sup>–1</sup> and cycling performance with 88.9% retention of its initial capacitance after 10,000 cycles. Furthermore, the as-fabricated Co-VS<sub>4</sub>/G//rGO asymmetric supercapacitor (ASC) device presents an energy density value of 75.8 W h kg<sup>–1</sup> at a power density of 0.791 kW kg<sup>–1</sup> and cycling stability with 91.1% of its capacitance following 10,000 cycles. The performance of the rodlike Co-VS<sub>4</sub>/G composite shows a predominant advantage toward the development of effective energy storage systems.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c02250\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c02250","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超级电容器(SC)因其作为储能设备所具有的功率密度优势而得到广泛认可;但如何设计出一种具有出色能量密度的高效电极材料仍是一项巨大挑战。本研究采用可扩展的溶热工艺,在石墨烯纳米片上成功制备了具有独特纳米结构的纳米棒状掺钴硫化钒(Co-VS4/G)。对 Co-VS4/G 的形貌和结构进行了研究,证明钴掺杂到了 VS4 结构的晶体中。这将产生更多的缺陷并带来丰富的氧化还原反应,从而提高电化学性能。值得注意的是,制备的 Co-VS4/G 复合材料在 1 A g-1 电流密度值下的比电容为 1230 F g-1,在 30 A g-1 电流密度值下的速率能力为 796 F g-1,循环性能在 10,000 次循环后保持了初始电容的 88.9%。此外,经加工的 Co-VS4/G//rGO 非对称超级电容器 (ASC) 器件在功率密度为 0.791 kW kg-1 时的能量密度值为 75.8 W h kg-1,循环稳定性为 10,000 次循环后电容的 91.1%。棒状 Co-VS4/G 复合材料的性能显示出其在开发高效储能系统方面的显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cobalt-Doped Vanadium Sulfide Nanorods Anchored on Graphene for High-Performance Supercapacitors

Supercapacitors (SCs) have gained widespread recognition because of their advantageous power density as energy storage devices; it is still a great challenge to design a high-efficiency electrode material with outstanding energy density. In this work, nanorod-like cobalt-doped vanadium sulfide on a graphene nanosheet (Co-VS4/G) is successfully developed with a distinct nanostructure by employing a scalable solvothermal process. The morphology and structure of Co-VS4/G were explored to prove the Co doping well into the crystalline of VS4 architecture. This creates more defects and brings about rich redox reactions, resulting in enhanced electrochemical performance. Noticeably, the fabricated Co-VS4/G composite exhibits a specific capacitance of 1230 F g–1 at 1 A g–1 with a rate capability of 796 F g–1 at a current density value of 30 A g–1 and cycling performance with 88.9% retention of its initial capacitance after 10,000 cycles. Furthermore, the as-fabricated Co-VS4/G//rGO asymmetric supercapacitor (ASC) device presents an energy density value of 75.8 W h kg–1 at a power density of 0.791 kW kg–1 and cycling stability with 91.1% of its capacitance following 10,000 cycles. The performance of the rodlike Co-VS4/G composite shows a predominant advantage toward the development of effective energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Room-Temperature Synthesis of Au@AuCu Alloyed Nanorods in Aqueous Solutions for High Catalytic Activity and Enhanced Stability Achieving High Quantum Efficiency in Cs3Cu2I5 Nanocrystals by the A-Site Ion Substitution for Flexible Blue Electroluminescence Devices and Enhanced Photovoltaic Cells Manganese and Cobalt Heterostructures in Carbon Aerogels for the Improved Electrochemical Performance of Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1