用于抗肿瘤药物递送且对正常细胞毒性低的双重还原敏感纳米细胞

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-06-28 DOI:10.1021/acsanm.4c01908
Shixi Li, Xue Liu, Xuhua Liang, Xuejun Wang
{"title":"用于抗肿瘤药物递送且对正常细胞毒性低的双重还原敏感纳米细胞","authors":"Shixi Li, Xue Liu, Xuhua Liang, Xuejun Wang","doi":"10.1021/acsanm.4c01908","DOIUrl":null,"url":null,"abstract":"In this work, a dual-thiol-responsive drug delivery system was fabricated by embedding the reduction-sensitive doxorubicin prodrug (DOX-prodrug) in the reduction-responsive carrier. Therefore, the amphiphilic block copolymer poly(lactide)-SS-poly(2-hydroxyethyl methacrylate) (PLA-SS-PHEMA) was synthesized to be used as an anticancer drug carrier, which would self-assemble into spherical micelles in an aqueous solution with an average diameter of approximately 100 nm. The DOX-prodrug could be loaded into the PLA-SS-PHEMA micelles with a high drug loading efficiency (5.27%) and entrapment efficiency (58%). The in vitro release results demonstrated that the cleavage of the intervening disulfide bonds in both the carrier and prodrug in response to a reductive environment led to fast release of the anticancer drug. The cytotoxicity results showed that the dual reduction-sensitive drug delivery system could effectively inhibit tumor cell proliferation, while it had almost no side effects on normal cells. The CLSM results are in agreement with that of flow cytometry, indicating that the drug-loaded micelles could be efficiently internalized into the HeLa cells and the drug is released into the cytoplasm and then enters the nuclei. We further investigated the cell endocytosis mechanism for the micelles, suggesting that the clathrin-mediated endocytosis pathway played the main role in the internalization of this nanocarrier.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Reduction-Sensitive Nanomicelles for Antitumor Drug Delivery with Low Toxicity to Normal Cells\",\"authors\":\"Shixi Li, Xue Liu, Xuhua Liang, Xuejun Wang\",\"doi\":\"10.1021/acsanm.4c01908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a dual-thiol-responsive drug delivery system was fabricated by embedding the reduction-sensitive doxorubicin prodrug (DOX-prodrug) in the reduction-responsive carrier. Therefore, the amphiphilic block copolymer poly(lactide)-SS-poly(2-hydroxyethyl methacrylate) (PLA-SS-PHEMA) was synthesized to be used as an anticancer drug carrier, which would self-assemble into spherical micelles in an aqueous solution with an average diameter of approximately 100 nm. The DOX-prodrug could be loaded into the PLA-SS-PHEMA micelles with a high drug loading efficiency (5.27%) and entrapment efficiency (58%). The in vitro release results demonstrated that the cleavage of the intervening disulfide bonds in both the carrier and prodrug in response to a reductive environment led to fast release of the anticancer drug. The cytotoxicity results showed that the dual reduction-sensitive drug delivery system could effectively inhibit tumor cell proliferation, while it had almost no side effects on normal cells. The CLSM results are in agreement with that of flow cytometry, indicating that the drug-loaded micelles could be efficiently internalized into the HeLa cells and the drug is released into the cytoplasm and then enters the nuclei. We further investigated the cell endocytosis mechanism for the micelles, suggesting that the clathrin-mediated endocytosis pathway played the main role in the internalization of this nanocarrier.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsanm.4c01908\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsanm.4c01908","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过将还原敏感性多柔比星原药(DOX-prodrug)嵌入还原响应载体,制备了一种双硫醇响应给药系统。因此,合成了两亲嵌段共聚物聚(乳酰胺)-SS-聚(2-羟乙基甲基丙烯酸酯)(PLA-SS-PHEMA)作为抗癌药物载体,该载体在水溶液中会自组装成平均直径约为 100 nm 的球形胶束。聚乳酸-SS-PHEMA胶束可负载DOX药物,药物负载效率(5.27%)和夹带效率(58%)均很高。体外释放结果表明,载体和原药中的二硫键在还原环境下发生裂解,导致抗癌药物的快速释放。细胞毒性结果表明,双还原敏感给药系统能有效抑制肿瘤细胞的增殖,而对正常细胞几乎没有副作用。CLSM结果与流式细胞术结果一致,表明载药胶束能有效地内化到HeLa细胞中,药物被释放到细胞质中,然后进入细胞核。我们进一步研究了胶束的细胞内吞机制,结果表明凝胶酶介导的内吞途径在该纳米载体的内化过程中发挥了主要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual Reduction-Sensitive Nanomicelles for Antitumor Drug Delivery with Low Toxicity to Normal Cells
In this work, a dual-thiol-responsive drug delivery system was fabricated by embedding the reduction-sensitive doxorubicin prodrug (DOX-prodrug) in the reduction-responsive carrier. Therefore, the amphiphilic block copolymer poly(lactide)-SS-poly(2-hydroxyethyl methacrylate) (PLA-SS-PHEMA) was synthesized to be used as an anticancer drug carrier, which would self-assemble into spherical micelles in an aqueous solution with an average diameter of approximately 100 nm. The DOX-prodrug could be loaded into the PLA-SS-PHEMA micelles with a high drug loading efficiency (5.27%) and entrapment efficiency (58%). The in vitro release results demonstrated that the cleavage of the intervening disulfide bonds in both the carrier and prodrug in response to a reductive environment led to fast release of the anticancer drug. The cytotoxicity results showed that the dual reduction-sensitive drug delivery system could effectively inhibit tumor cell proliferation, while it had almost no side effects on normal cells. The CLSM results are in agreement with that of flow cytometry, indicating that the drug-loaded micelles could be efficiently internalized into the HeLa cells and the drug is released into the cytoplasm and then enters the nuclei. We further investigated the cell endocytosis mechanism for the micelles, suggesting that the clathrin-mediated endocytosis pathway played the main role in the internalization of this nanocarrier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Nitrogen-Doped Porous Carbon with Staged Nanopore Formation for Capacitors Nickel-Embedded Carbon Nanostructures as Noble Metal-Free Catalysts for the Hydrogen Evolution Reaction High-Performance Ammonia Gas Sensor Based on a Catalytic Ruthenium- Gated Field-Effect Transistor Strong Metal–Support Interactions in Cu(I)-Dark TiO2 Nanoscale Photocatalysts Prepared by Pulsed Laser Ablation for Hydrogen Evolution Reaction Quantum Dots as an Active Reservoir for Longer Effective Lifetimes in GaAs Bulk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1