通过定向蚀刻模板策略调节原子分散的 Ru 微环境以实现高效固氮

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-06-26 DOI:10.1021/acsanm.4c02608
Zhiya Han*, Jiaxi Yuan, Gaijuan Guo, Yue Kang, Yixin Liu, Chunxia Zhou, Liping Tong, Binfeng Lu, Xiyang Liu, Quan Wang, Miaosen Yang, Senhe Huang, Boxu Feng* and Sheng Han*, 
{"title":"通过定向蚀刻模板策略调节原子分散的 Ru 微环境以实现高效固氮","authors":"Zhiya Han*,&nbsp;Jiaxi Yuan,&nbsp;Gaijuan Guo,&nbsp;Yue Kang,&nbsp;Yixin Liu,&nbsp;Chunxia Zhou,&nbsp;Liping Tong,&nbsp;Binfeng Lu,&nbsp;Xiyang Liu,&nbsp;Quan Wang,&nbsp;Miaosen Yang,&nbsp;Senhe Huang,&nbsp;Boxu Feng* and Sheng Han*,&nbsp;","doi":"10.1021/acsanm.4c02608","DOIUrl":null,"url":null,"abstract":"<p >The synthesis of ammonia (NH<sub>3</sub>) via the Haber–Bosch process is energy-intensive and environmentally challenging, necessitating the development of sustainable alternatives. Herein, we report a directed etch template strategy to create atomically dispersed Ru–N<sub>4</sub> active sites within layered porous carbon (NC@Ru) for efficient electrochemical nitrogen reduction reaction (NRR). The removal of the MgO template results in an interconnected carbon network with hierarchical porous structures, significantly enhancing the accessibility and mass transfer of the active sites. The NC@Ru catalyst demonstrated superior NRR performance, achieving an ammonia yield rate of 196.2 μg h<sup>–1</sup> mg<sub>cat.</sub><sup>–1</sup> and a Faradaic efficiency of 43.8%. In situ electrochemical mass spectrometry was employed to analyze NRR kinetics, while density functional theory calculations were utilized to elucidate the NRR mechanism and identify the rate-determining step. The work introduces a novel high-performance catalyst for electrocatalytic NRR and provides a practical strategy for optimizing active-site microenvironments, laying the groundwork for future commercial applications of electrocatalytic NRR.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of Atomically Dispersed Ru Microenvironments by a Directed Etch Template Strategy for Efficient Nitrogen Fixation\",\"authors\":\"Zhiya Han*,&nbsp;Jiaxi Yuan,&nbsp;Gaijuan Guo,&nbsp;Yue Kang,&nbsp;Yixin Liu,&nbsp;Chunxia Zhou,&nbsp;Liping Tong,&nbsp;Binfeng Lu,&nbsp;Xiyang Liu,&nbsp;Quan Wang,&nbsp;Miaosen Yang,&nbsp;Senhe Huang,&nbsp;Boxu Feng* and Sheng Han*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c02608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The synthesis of ammonia (NH<sub>3</sub>) via the Haber–Bosch process is energy-intensive and environmentally challenging, necessitating the development of sustainable alternatives. Herein, we report a directed etch template strategy to create atomically dispersed Ru–N<sub>4</sub> active sites within layered porous carbon (NC@Ru) for efficient electrochemical nitrogen reduction reaction (NRR). The removal of the MgO template results in an interconnected carbon network with hierarchical porous structures, significantly enhancing the accessibility and mass transfer of the active sites. The NC@Ru catalyst demonstrated superior NRR performance, achieving an ammonia yield rate of 196.2 μg h<sup>–1</sup> mg<sub>cat.</sub><sup>–1</sup> and a Faradaic efficiency of 43.8%. In situ electrochemical mass spectrometry was employed to analyze NRR kinetics, while density functional theory calculations were utilized to elucidate the NRR mechanism and identify the rate-determining step. The work introduces a novel high-performance catalyst for electrocatalytic NRR and provides a practical strategy for optimizing active-site microenvironments, laying the groundwork for future commercial applications of electrocatalytic NRR.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c02608\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c02608","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过哈伯-博施工艺合成氨(NH3)既耗能又对环境构成挑战,因此有必要开发可持续的替代品。在此,我们报告了一种定向蚀刻模板策略,在层状多孔碳(NC@Ru)中创建原子分散的 Ru-N4 活性位点,用于高效的电化学氮还原反应(NRR)。除去氧化镁模板后,形成了具有分层多孔结构的互连碳网络,显著提高了活性位点的可及性和传质能力。NC@Ru 催化剂表现出卓越的 NRR 性能,氨产量达到 196.2 μg h-1 mgcat.-1,法拉第效率达到 43.8%。利用原位电化学质谱分析了 NRR 动力学,同时利用密度泛函理论计算阐明了 NRR 机理并确定了速率决定步骤。该研究为电催化 NRR 引入了一种新型高性能催化剂,并提供了一种优化活性位点微环境的实用策略,为未来电催化 NRR 的商业应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modulation of Atomically Dispersed Ru Microenvironments by a Directed Etch Template Strategy for Efficient Nitrogen Fixation

The synthesis of ammonia (NH3) via the Haber–Bosch process is energy-intensive and environmentally challenging, necessitating the development of sustainable alternatives. Herein, we report a directed etch template strategy to create atomically dispersed Ru–N4 active sites within layered porous carbon (NC@Ru) for efficient electrochemical nitrogen reduction reaction (NRR). The removal of the MgO template results in an interconnected carbon network with hierarchical porous structures, significantly enhancing the accessibility and mass transfer of the active sites. The NC@Ru catalyst demonstrated superior NRR performance, achieving an ammonia yield rate of 196.2 μg h–1 mgcat.–1 and a Faradaic efficiency of 43.8%. In situ electrochemical mass spectrometry was employed to analyze NRR kinetics, while density functional theory calculations were utilized to elucidate the NRR mechanism and identify the rate-determining step. The work introduces a novel high-performance catalyst for electrocatalytic NRR and provides a practical strategy for optimizing active-site microenvironments, laying the groundwork for future commercial applications of electrocatalytic NRR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Room-Temperature Synthesis of Au@AuCu Alloyed Nanorods in Aqueous Solutions for High Catalytic Activity and Enhanced Stability Achieving High Quantum Efficiency in Cs3Cu2I5 Nanocrystals by the A-Site Ion Substitution for Flexible Blue Electroluminescence Devices and Enhanced Photovoltaic Cells Manganese and Cobalt Heterostructures in Carbon Aerogels for the Improved Electrochemical Performance of Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1