分散在富氧缺陷 CeO2 纳米棒上的 Ru 用于氨分解

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-06-26 DOI:10.1021/acsanm.4c01416
Baoshan Teng, Chunhui Ma, Jiayu Chen, Yunlai Zhang, Baohuan Wei, Maohai Sang, Hui Wang* and Yuhan Sun*, 
{"title":"分散在富氧缺陷 CeO2 纳米棒上的 Ru 用于氨分解","authors":"Baoshan Teng,&nbsp;Chunhui Ma,&nbsp;Jiayu Chen,&nbsp;Yunlai Zhang,&nbsp;Baohuan Wei,&nbsp;Maohai Sang,&nbsp;Hui Wang* and Yuhan Sun*,&nbsp;","doi":"10.1021/acsanm.4c01416","DOIUrl":null,"url":null,"abstract":"<p >Ammonia is recognized as the best carrier for hydrogen storage and transportation. Nanomaterial catalysts have eminent catalytic activity for ammonia decomposition. However, the preparation of low-loading, high-activity noble metal atomically dispersed nanometer ammonia decomposition catalysts and their reaction mechanisms remain obscure. In this work, we report the synthesis of a stable ruthenium (Ru) atomically dispersed catalyst with oxygen-rich defects achieved through hydrogen etching of the support CeO<sub>2</sub>NR nanorods. The oxygen defects result in the catalyst exhibiting a favorable low-temperature catalytic activity and an exceedingly high atom utilization rate for ammonia decomposition. The hydrogen production rate from ammonia decomposition per unit mass of Ru is as high as 2446 mmol H<sub>2</sub> g<sub>Ru</sub><sup>–1</sup> min<sup>–1</sup> at 1 bar, 450 °C, and gas hour space velocity = 12,000 mL g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup>. In this case, the highly dispersed Ru provided enough active sites, while the oxygen defects of the catalyst enhanced the electron transfer tunnel between Ru and the nanorod support under a Schottky contact model. The detailed mechanism of oxygen defects for improving the catalytic performance of ammonia decomposition was studied by DFT modeling. Thus, this work provides a promising strategy to improve the catalytic efficiency of an atomically dispersed Ru nanocatalyst.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ru Dispersed on Oxygen-Defect-Rich CeO2 Nanorods for Ammonia Decomposition\",\"authors\":\"Baoshan Teng,&nbsp;Chunhui Ma,&nbsp;Jiayu Chen,&nbsp;Yunlai Zhang,&nbsp;Baohuan Wei,&nbsp;Maohai Sang,&nbsp;Hui Wang* and Yuhan Sun*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c01416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ammonia is recognized as the best carrier for hydrogen storage and transportation. Nanomaterial catalysts have eminent catalytic activity for ammonia decomposition. However, the preparation of low-loading, high-activity noble metal atomically dispersed nanometer ammonia decomposition catalysts and their reaction mechanisms remain obscure. In this work, we report the synthesis of a stable ruthenium (Ru) atomically dispersed catalyst with oxygen-rich defects achieved through hydrogen etching of the support CeO<sub>2</sub>NR nanorods. The oxygen defects result in the catalyst exhibiting a favorable low-temperature catalytic activity and an exceedingly high atom utilization rate for ammonia decomposition. The hydrogen production rate from ammonia decomposition per unit mass of Ru is as high as 2446 mmol H<sub>2</sub> g<sub>Ru</sub><sup>–1</sup> min<sup>–1</sup> at 1 bar, 450 °C, and gas hour space velocity = 12,000 mL g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup>. In this case, the highly dispersed Ru provided enough active sites, while the oxygen defects of the catalyst enhanced the electron transfer tunnel between Ru and the nanorod support under a Schottky contact model. The detailed mechanism of oxygen defects for improving the catalytic performance of ammonia decomposition was studied by DFT modeling. Thus, this work provides a promising strategy to improve the catalytic efficiency of an atomically dispersed Ru nanocatalyst.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c01416\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c01416","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氨是公认的氢储存和运输的最佳载体。纳米材料催化剂对氨分解具有显著的催化活性。然而,低负载、高活性贵金属原子分散纳米氨分解催化剂的制备及其反应机理仍不清楚。在这项工作中,我们报道了一种稳定的钌 (Ru) 原子分散催化剂的合成,该催化剂通过氢腐蚀支撑物 CeO2NR 纳米棒实现了富氧缺陷。氧缺陷使催化剂表现出良好的低温催化活性和极高的氨分解原子利用率。在 1 bar、450 °C 和气体时空速度 = 12,000 mL gcat-1 h-1 的条件下,单位质量的 Ru 分解氨产生氢的速率高达 2446 mmol H2 gRu-1 min-1。在这种情况下,高度分散的 Ru 提供了足够的活性位点,而催化剂的氧缺陷则在肖特基接触模型下增强了 Ru 与纳米棒载体之间的电子传递隧道。通过 DFT 建模研究了氧缺陷改善氨分解催化性能的详细机制。因此,这项工作为提高原子分散 Ru 纳米催化剂的催化效率提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ru Dispersed on Oxygen-Defect-Rich CeO2 Nanorods for Ammonia Decomposition

Ammonia is recognized as the best carrier for hydrogen storage and transportation. Nanomaterial catalysts have eminent catalytic activity for ammonia decomposition. However, the preparation of low-loading, high-activity noble metal atomically dispersed nanometer ammonia decomposition catalysts and their reaction mechanisms remain obscure. In this work, we report the synthesis of a stable ruthenium (Ru) atomically dispersed catalyst with oxygen-rich defects achieved through hydrogen etching of the support CeO2NR nanorods. The oxygen defects result in the catalyst exhibiting a favorable low-temperature catalytic activity and an exceedingly high atom utilization rate for ammonia decomposition. The hydrogen production rate from ammonia decomposition per unit mass of Ru is as high as 2446 mmol H2 gRu–1 min–1 at 1 bar, 450 °C, and gas hour space velocity = 12,000 mL gcat–1 h–1. In this case, the highly dispersed Ru provided enough active sites, while the oxygen defects of the catalyst enhanced the electron transfer tunnel between Ru and the nanorod support under a Schottky contact model. The detailed mechanism of oxygen defects for improving the catalytic performance of ammonia decomposition was studied by DFT modeling. Thus, this work provides a promising strategy to improve the catalytic efficiency of an atomically dispersed Ru nanocatalyst.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Room-Temperature Synthesis of Au@AuCu Alloyed Nanorods in Aqueous Solutions for High Catalytic Activity and Enhanced Stability Achieving High Quantum Efficiency in Cs3Cu2I5 Nanocrystals by the A-Site Ion Substitution for Flexible Blue Electroluminescence Devices and Enhanced Photovoltaic Cells Manganese and Cobalt Heterostructures in Carbon Aerogels for the Improved Electrochemical Performance of Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1