{"title":"通过正则化神经激活敏感性提高可解释性","authors":"Ofir Moshe, Gil Fidel, Ron Bitton, Asaf Shabtai","doi":"10.1007/s10994-024-06549-4","DOIUrl":null,"url":null,"abstract":"<p>State-of-the-art deep neural networks (DNNs) are highly effective at tackling many real-world tasks. However, their widespread adoption in mission-critical contexts is limited due to two major weaknesses - their susceptibility to adversarial attacks and their opaqueness. The former raises concerns about DNNs’ security and generalization in real-world conditions, while the latter, opaqueness, directly impacts interpretability. The lack of interpretability diminishes user trust as it is challenging to have confidence in a model’s decision when its reasoning is not aligned with human perspectives. In this research, we (1) examine the effect of adversarial robustness on interpretability, and (2) present a novel approach for improving DNNs’ interpretability that is based on the regularization of neural activation sensitivity. We evaluate the interpretability of models trained using our method to that of standard models and models trained using state-of-the-art adversarial robustness techniques. Our results show that adversarially robust models are superior to standard models, and that models trained using our proposed method are even better than adversarially robust models in terms of interpretability.(Code provided in supplementary material.)</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"32 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving interpretability via regularization of neural activation sensitivity\",\"authors\":\"Ofir Moshe, Gil Fidel, Ron Bitton, Asaf Shabtai\",\"doi\":\"10.1007/s10994-024-06549-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>State-of-the-art deep neural networks (DNNs) are highly effective at tackling many real-world tasks. However, their widespread adoption in mission-critical contexts is limited due to two major weaknesses - their susceptibility to adversarial attacks and their opaqueness. The former raises concerns about DNNs’ security and generalization in real-world conditions, while the latter, opaqueness, directly impacts interpretability. The lack of interpretability diminishes user trust as it is challenging to have confidence in a model’s decision when its reasoning is not aligned with human perspectives. In this research, we (1) examine the effect of adversarial robustness on interpretability, and (2) present a novel approach for improving DNNs’ interpretability that is based on the regularization of neural activation sensitivity. We evaluate the interpretability of models trained using our method to that of standard models and models trained using state-of-the-art adversarial robustness techniques. Our results show that adversarially robust models are superior to standard models, and that models trained using our proposed method are even better than adversarially robust models in terms of interpretability.(Code provided in supplementary material.)</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06549-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06549-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improving interpretability via regularization of neural activation sensitivity
State-of-the-art deep neural networks (DNNs) are highly effective at tackling many real-world tasks. However, their widespread adoption in mission-critical contexts is limited due to two major weaknesses - their susceptibility to adversarial attacks and their opaqueness. The former raises concerns about DNNs’ security and generalization in real-world conditions, while the latter, opaqueness, directly impacts interpretability. The lack of interpretability diminishes user trust as it is challenging to have confidence in a model’s decision when its reasoning is not aligned with human perspectives. In this research, we (1) examine the effect of adversarial robustness on interpretability, and (2) present a novel approach for improving DNNs’ interpretability that is based on the regularization of neural activation sensitivity. We evaluate the interpretability of models trained using our method to that of standard models and models trained using state-of-the-art adversarial robustness techniques. Our results show that adversarially robust models are superior to standard models, and that models trained using our proposed method are even better than adversarially robust models in terms of interpretability.(Code provided in supplementary material.)
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.