{"title":"通过堆叠学习增强云游戏 QoE 估算","authors":"Daniel Soares, Marcos Carvalho, Daniel F. Macedo","doi":"10.1007/s10922-024-09836-6","DOIUrl":null,"url":null,"abstract":"<p>The Cloud Gaming sector is burgeoning with an estimated annual growth of more than 50%, poised to reach a market value of $22 billion by 2030, and notably, GeForce Now, launched in 2020, reached 20 million users by August 2022. Cloud gaming presents cost-effective advantages for users and developers by eliminating hardware investments and game purchases, reducing development costs, and optimizing distribution efforts. However, it introduces challenges for network operators and providers, demanding low latency and substantial computational power. User satisfaction in cloud gaming depends on various factors, including game content, network type, and context, all shaping Quality of Experience. This study extends prior research, merging datasets from wired and mobile cloud gaming services to create an Expanded stacking model. All data gathering involves actual users engaging in gameplay within a realistic test environment, employing protocols akin to those utilized by the Geforce Now cloud gaming platform. Results indicate significant improvements in QoE estimation across different gaming contexts, highlighting the feasibility of a versatile predictive model for cloud gaming experiences, building upon previous stacking learning approaches.</p>","PeriodicalId":50119,"journal":{"name":"Journal of Network and Systems Management","volume":"86 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Cloud Gaming QoE Estimation by Stacking Learning\",\"authors\":\"Daniel Soares, Marcos Carvalho, Daniel F. Macedo\",\"doi\":\"10.1007/s10922-024-09836-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Cloud Gaming sector is burgeoning with an estimated annual growth of more than 50%, poised to reach a market value of $22 billion by 2030, and notably, GeForce Now, launched in 2020, reached 20 million users by August 2022. Cloud gaming presents cost-effective advantages for users and developers by eliminating hardware investments and game purchases, reducing development costs, and optimizing distribution efforts. However, it introduces challenges for network operators and providers, demanding low latency and substantial computational power. User satisfaction in cloud gaming depends on various factors, including game content, network type, and context, all shaping Quality of Experience. This study extends prior research, merging datasets from wired and mobile cloud gaming services to create an Expanded stacking model. All data gathering involves actual users engaging in gameplay within a realistic test environment, employing protocols akin to those utilized by the Geforce Now cloud gaming platform. Results indicate significant improvements in QoE estimation across different gaming contexts, highlighting the feasibility of a versatile predictive model for cloud gaming experiences, building upon previous stacking learning approaches.</p>\",\"PeriodicalId\":50119,\"journal\":{\"name\":\"Journal of Network and Systems Management\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Systems Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10922-024-09836-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Systems Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10922-024-09836-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Enhancing Cloud Gaming QoE Estimation by Stacking Learning
The Cloud Gaming sector is burgeoning with an estimated annual growth of more than 50%, poised to reach a market value of $22 billion by 2030, and notably, GeForce Now, launched in 2020, reached 20 million users by August 2022. Cloud gaming presents cost-effective advantages for users and developers by eliminating hardware investments and game purchases, reducing development costs, and optimizing distribution efforts. However, it introduces challenges for network operators and providers, demanding low latency and substantial computational power. User satisfaction in cloud gaming depends on various factors, including game content, network type, and context, all shaping Quality of Experience. This study extends prior research, merging datasets from wired and mobile cloud gaming services to create an Expanded stacking model. All data gathering involves actual users engaging in gameplay within a realistic test environment, employing protocols akin to those utilized by the Geforce Now cloud gaming platform. Results indicate significant improvements in QoE estimation across different gaming contexts, highlighting the feasibility of a versatile predictive model for cloud gaming experiences, building upon previous stacking learning approaches.
期刊介绍:
Journal of Network and Systems Management, features peer-reviewed original research, as well as case studies in the fields of network and system management. The journal regularly disseminates significant new information on both the telecommunications and computing aspects of these fields, as well as their evolution and emerging integration. This outstanding quarterly covers architecture, analysis, design, software, standards, and migration issues related to the operation, management, and control of distributed systems and communication networks for voice, data, video, and networked computing.