Mohamed Zahlan Abdul Muthalif, Davood Shojaei, Kourosh Khoshelham
{"title":"地下公用设施可视化的交互式混合现实方法","authors":"Mohamed Zahlan Abdul Muthalif, Davood Shojaei, Kourosh Khoshelham","doi":"10.1007/s41064-024-00295-x","DOIUrl":null,"url":null,"abstract":"<p>This research aims to overcome the difficulties associated with visualizing underground utilities by proposing six interactive visualization methods that utilize Mixed Reality (MR) technology. By leveraging MR technology, which enables the seamless integration of virtual and real-world content, a more immersive and authentic experience is possible. The study evaluates the proposed visualization methods based on scene complexity, parallax effect, real-world occlusion, depth perception, and overall effectiveness, aiming to identify the most effective methods for addressing visual perceptual challenges in the context of underground utilities. The findings suggest that certain MR visualization methods are more effective than others in mitigating the challenges of visualizing underground utilities. The research highlights the potential of these methods, and feedback from industry professionals suggests that each method can be valuable in specific contexts.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"7 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive Mixed Reality Methods for Visualization of Underground Utilities\",\"authors\":\"Mohamed Zahlan Abdul Muthalif, Davood Shojaei, Kourosh Khoshelham\",\"doi\":\"10.1007/s41064-024-00295-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research aims to overcome the difficulties associated with visualizing underground utilities by proposing six interactive visualization methods that utilize Mixed Reality (MR) technology. By leveraging MR technology, which enables the seamless integration of virtual and real-world content, a more immersive and authentic experience is possible. The study evaluates the proposed visualization methods based on scene complexity, parallax effect, real-world occlusion, depth perception, and overall effectiveness, aiming to identify the most effective methods for addressing visual perceptual challenges in the context of underground utilities. The findings suggest that certain MR visualization methods are more effective than others in mitigating the challenges of visualizing underground utilities. The research highlights the potential of these methods, and feedback from industry professionals suggests that each method can be valuable in specific contexts.</p>\",\"PeriodicalId\":56035,\"journal\":{\"name\":\"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s41064-024-00295-x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s41064-024-00295-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Interactive Mixed Reality Methods for Visualization of Underground Utilities
This research aims to overcome the difficulties associated with visualizing underground utilities by proposing six interactive visualization methods that utilize Mixed Reality (MR) technology. By leveraging MR technology, which enables the seamless integration of virtual and real-world content, a more immersive and authentic experience is possible. The study evaluates the proposed visualization methods based on scene complexity, parallax effect, real-world occlusion, depth perception, and overall effectiveness, aiming to identify the most effective methods for addressing visual perceptual challenges in the context of underground utilities. The findings suggest that certain MR visualization methods are more effective than others in mitigating the challenges of visualizing underground utilities. The research highlights the potential of these methods, and feedback from industry professionals suggests that each method can be valuable in specific contexts.
期刊介绍:
PFG is an international scholarly journal covering the progress and application of photogrammetric methods, remote sensing technology and the interconnected field of geoinformation science. It places special editorial emphasis on the communication of new methodologies in data acquisition and new approaches to optimized processing and interpretation of all types of data which were acquired by photogrammetric methods, remote sensing, image processing and the computer-aided interpretation of such data in general. The journal hence addresses both researchers and students of these disciplines at academic institutions and universities as well as the downstream users in both the private sector and public administration.
Founded in 1926 under the former name Bildmessung und Luftbildwesen, PFG is worldwide the oldest journal on photogrammetry. It is the official journal of the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF).