优化多量子壳氮化镓基器件中隧道结层的反应器内原位活化退火条件

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Physica Status Solidi B-basic Solid State Physics Pub Date : 2024-07-02 DOI:10.1002/pssb.202400009
Mizuki Takahashi, Yuki Yamanaka, Shiori Ii, Ayaka Shima, Soma Inaba, Kosei Kubota, Yuta Hattori, Tetsuya Takeuchi, Motoaki Iwaya, Satoshi Kamiyama
{"title":"优化多量子壳氮化镓基器件中隧道结层的反应器内原位活化退火条件","authors":"Mizuki Takahashi, Yuki Yamanaka, Shiori Ii, Ayaka Shima, Soma Inaba, Kosei Kubota, Yuta Hattori, Tetsuya Takeuchi, Motoaki Iwaya, Satoshi Kamiyama","doi":"10.1002/pssb.202400009","DOIUrl":null,"url":null,"abstract":"For realizing room‐temperature continuous‐wave operation in core–shell GaN nanowire‐based semiconductor lasers, certain device characteristics are required, namely, a low threshold current and low operating voltage. To reduce the operating voltage and inject current into the m‐plane multiquantum shell (MQS) active region, a new structure with a tunnel junction and embedded n‐GaN is proposed. One of the problems in this proposed device architecture is the high resistance at the tunnel junction layer due to hydrogen passivation in the insufficiently activated p‐GaN shell. In situ activation annealing and suppression of re‐passivation during subsequent growth are necessary to reduce the operating voltage. Herein, the time and temperature dependence of in situ activation annealing in a reactor to lower the resistance of tunnel junction layers grown on nanowires with nonpolar m‐planes is investigated. Subsequent n<jats:sup>+</jats:sup>‐GaN growth is implemented at 550 °C. As a result, the turn‐on voltage is observed to be dependent on the activation annealing time and temperature. The lowest turn‐on voltage is ≈5.4 V at an activation annealing time of 30 min and activation annealing temperature of 800 °C.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"213 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of In‐Reactor In Situ Activation Annealing Conditions for Tunnel Junction Layers in Multiquantum Shell GaN‐Based Devices\",\"authors\":\"Mizuki Takahashi, Yuki Yamanaka, Shiori Ii, Ayaka Shima, Soma Inaba, Kosei Kubota, Yuta Hattori, Tetsuya Takeuchi, Motoaki Iwaya, Satoshi Kamiyama\",\"doi\":\"10.1002/pssb.202400009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For realizing room‐temperature continuous‐wave operation in core–shell GaN nanowire‐based semiconductor lasers, certain device characteristics are required, namely, a low threshold current and low operating voltage. To reduce the operating voltage and inject current into the m‐plane multiquantum shell (MQS) active region, a new structure with a tunnel junction and embedded n‐GaN is proposed. One of the problems in this proposed device architecture is the high resistance at the tunnel junction layer due to hydrogen passivation in the insufficiently activated p‐GaN shell. In situ activation annealing and suppression of re‐passivation during subsequent growth are necessary to reduce the operating voltage. Herein, the time and temperature dependence of in situ activation annealing in a reactor to lower the resistance of tunnel junction layers grown on nanowires with nonpolar m‐planes is investigated. Subsequent n<jats:sup>+</jats:sup>‐GaN growth is implemented at 550 °C. As a result, the turn‐on voltage is observed to be dependent on the activation annealing time and temperature. The lowest turn‐on voltage is ≈5.4 V at an activation annealing time of 30 min and activation annealing temperature of 800 °C.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":\"213 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400009\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400009","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

要在基于核壳氮化镓纳米线的半导体激光器中实现室温连续波工作,需要具备某些器件特性,即低阈值电流和低工作电压。为了降低工作电压并向 m 平面多量子壳 (MQS) 有源区注入电流,我们提出了一种带有隧道结和嵌入 n-GaN 的新结构。这种拟议器件结构的问题之一是由于未充分活化的 p-GaN 外壳中的氢钝化导致隧道结层电阻过高。要降低工作电压,就必须在后续生长过程中进行原位活化退火并抑制再钝化。本文研究了在反应器中进行原位活化退火以降低在具有非极性 m 平面的纳米线上生长的隧道结层电阻的时间和温度相关性。随后在 550 ℃ 下进行 n+-GaN 生长。结果发现,导通电压与活化退火时间和温度有关。在活化退火时间为 30 分钟、活化退火温度为 800 ℃ 时,最低导通电压≈5.4 V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of In‐Reactor In Situ Activation Annealing Conditions for Tunnel Junction Layers in Multiquantum Shell GaN‐Based Devices
For realizing room‐temperature continuous‐wave operation in core–shell GaN nanowire‐based semiconductor lasers, certain device characteristics are required, namely, a low threshold current and low operating voltage. To reduce the operating voltage and inject current into the m‐plane multiquantum shell (MQS) active region, a new structure with a tunnel junction and embedded n‐GaN is proposed. One of the problems in this proposed device architecture is the high resistance at the tunnel junction layer due to hydrogen passivation in the insufficiently activated p‐GaN shell. In situ activation annealing and suppression of re‐passivation during subsequent growth are necessary to reduce the operating voltage. Herein, the time and temperature dependence of in situ activation annealing in a reactor to lower the resistance of tunnel junction layers grown on nanowires with nonpolar m‐planes is investigated. Subsequent n+‐GaN growth is implemented at 550 °C. As a result, the turn‐on voltage is observed to be dependent on the activation annealing time and temperature. The lowest turn‐on voltage is ≈5.4 V at an activation annealing time of 30 min and activation annealing temperature of 800 °C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica Status Solidi B-basic Solid State Physics
Physica Status Solidi B-basic Solid State Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
6.20%
发文量
321
审稿时长
2 months
期刊介绍: physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions. physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.
期刊最新文献
Accelerating Nonequilibrium Green Functions Simulations: The G1–G2 Scheme and Beyond Tip‐Enhanced Raman Spectroscopy Coherence Length of 2D Materials: An Application to Graphene Magnetic Anisotropy of Cr2Te3: Competition between Surface and Middle Layers Progress in Non‐equilibrium Green's Functions VIII (PNGF VIII) Half‐Metallic Ferromagnetism in 2D Janus Monolayers: Mn2GeX (X = As, Sb)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1