Mizuki Takahashi, Yuki Yamanaka, Shiori Ii, Ayaka Shima, Soma Inaba, Kosei Kubota, Yuta Hattori, Tetsuya Takeuchi, Motoaki Iwaya, Satoshi Kamiyama
{"title":"优化多量子壳氮化镓基器件中隧道结层的反应器内原位活化退火条件","authors":"Mizuki Takahashi, Yuki Yamanaka, Shiori Ii, Ayaka Shima, Soma Inaba, Kosei Kubota, Yuta Hattori, Tetsuya Takeuchi, Motoaki Iwaya, Satoshi Kamiyama","doi":"10.1002/pssb.202400009","DOIUrl":null,"url":null,"abstract":"For realizing room‐temperature continuous‐wave operation in core–shell GaN nanowire‐based semiconductor lasers, certain device characteristics are required, namely, a low threshold current and low operating voltage. To reduce the operating voltage and inject current into the m‐plane multiquantum shell (MQS) active region, a new structure with a tunnel junction and embedded n‐GaN is proposed. One of the problems in this proposed device architecture is the high resistance at the tunnel junction layer due to hydrogen passivation in the insufficiently activated p‐GaN shell. In situ activation annealing and suppression of re‐passivation during subsequent growth are necessary to reduce the operating voltage. Herein, the time and temperature dependence of in situ activation annealing in a reactor to lower the resistance of tunnel junction layers grown on nanowires with nonpolar m‐planes is investigated. Subsequent n<jats:sup>+</jats:sup>‐GaN growth is implemented at 550 °C. As a result, the turn‐on voltage is observed to be dependent on the activation annealing time and temperature. The lowest turn‐on voltage is ≈5.4 V at an activation annealing time of 30 min and activation annealing temperature of 800 °C.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"213 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of In‐Reactor In Situ Activation Annealing Conditions for Tunnel Junction Layers in Multiquantum Shell GaN‐Based Devices\",\"authors\":\"Mizuki Takahashi, Yuki Yamanaka, Shiori Ii, Ayaka Shima, Soma Inaba, Kosei Kubota, Yuta Hattori, Tetsuya Takeuchi, Motoaki Iwaya, Satoshi Kamiyama\",\"doi\":\"10.1002/pssb.202400009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For realizing room‐temperature continuous‐wave operation in core–shell GaN nanowire‐based semiconductor lasers, certain device characteristics are required, namely, a low threshold current and low operating voltage. To reduce the operating voltage and inject current into the m‐plane multiquantum shell (MQS) active region, a new structure with a tunnel junction and embedded n‐GaN is proposed. One of the problems in this proposed device architecture is the high resistance at the tunnel junction layer due to hydrogen passivation in the insufficiently activated p‐GaN shell. In situ activation annealing and suppression of re‐passivation during subsequent growth are necessary to reduce the operating voltage. Herein, the time and temperature dependence of in situ activation annealing in a reactor to lower the resistance of tunnel junction layers grown on nanowires with nonpolar m‐planes is investigated. Subsequent n<jats:sup>+</jats:sup>‐GaN growth is implemented at 550 °C. As a result, the turn‐on voltage is observed to be dependent on the activation annealing time and temperature. The lowest turn‐on voltage is ≈5.4 V at an activation annealing time of 30 min and activation annealing temperature of 800 °C.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":\"213 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400009\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400009","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Optimization of In‐Reactor In Situ Activation Annealing Conditions for Tunnel Junction Layers in Multiquantum Shell GaN‐Based Devices
For realizing room‐temperature continuous‐wave operation in core–shell GaN nanowire‐based semiconductor lasers, certain device characteristics are required, namely, a low threshold current and low operating voltage. To reduce the operating voltage and inject current into the m‐plane multiquantum shell (MQS) active region, a new structure with a tunnel junction and embedded n‐GaN is proposed. One of the problems in this proposed device architecture is the high resistance at the tunnel junction layer due to hydrogen passivation in the insufficiently activated p‐GaN shell. In situ activation annealing and suppression of re‐passivation during subsequent growth are necessary to reduce the operating voltage. Herein, the time and temperature dependence of in situ activation annealing in a reactor to lower the resistance of tunnel junction layers grown on nanowires with nonpolar m‐planes is investigated. Subsequent n+‐GaN growth is implemented at 550 °C. As a result, the turn‐on voltage is observed to be dependent on the activation annealing time and temperature. The lowest turn‐on voltage is ≈5.4 V at an activation annealing time of 30 min and activation annealing temperature of 800 °C.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.