离子液体辅助缺陷钝化技术用于提高填充因子的高效碳基包晶石太阳能电池

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-06-19 DOI:10.1002/cnma.202400050
Junfang Zhang, Jiangying Lu, Xinrui Li, Suxin Zhao, Ye Yang, Dr. Peican Chen, Prof. Hanchi Cheng, Prof. Liya Zhou
{"title":"离子液体辅助缺陷钝化技术用于提高填充因子的高效碳基包晶石太阳能电池","authors":"Junfang Zhang,&nbsp;Jiangying Lu,&nbsp;Xinrui Li,&nbsp;Suxin Zhao,&nbsp;Ye Yang,&nbsp;Dr. Peican Chen,&nbsp;Prof. Hanchi Cheng,&nbsp;Prof. Liya Zhou","doi":"10.1002/cnma.202400050","DOIUrl":null,"url":null,"abstract":"<p>The preparation of high-quality perovskite thin films with long-term stability is the prerequisite for realizing efficient perovskite solar cells (PSCs). In this work, the effect of the bifunctional additive 1-ethyl-3-methylimidazolium acetate (EMIMAc) ionic liquid on defect passivation in perovskite films was systematically investigated. Both theoretical simulations and experimental results reveal that EMIMAc has a strong coordination interaction with the undercoordinated Pb<sup>2+</sup> through the lone electron pairs of carboxyl functional groups and the electron-rich imidazole moieties, leading to a decreased deep defect density of MAPbI<sub>3</sub> system. Besides, EMIMAc treatment realizes energy band alignment. As a result, the photoelectric conversion efficiency (PCE) of optimized PSCs reaches 17.07 %, and the filling factor (FF) exceeded 74.91 % which is the highest FF for hole transport layer (HTL)-free carbon-based MAPbI<sub>3</sub> devices based on TiO<sub>2</sub> electron transport layer. Moreover, the unencapsulated EMIMAc-modified device maintains approximately 89 % of its initial PCE after 30 days, which demonstrates much better air stability than control devices. These results provide effective strategies for improving the efficiency and long-term stability of HTL-free carbon-based PSCs (H-C-PSCs).</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic Liquid-Assisted Defect Passivation for Efficient Carbon-Based Perovskite Solar Cells with Enhanced Filling Factor\",\"authors\":\"Junfang Zhang,&nbsp;Jiangying Lu,&nbsp;Xinrui Li,&nbsp;Suxin Zhao,&nbsp;Ye Yang,&nbsp;Dr. Peican Chen,&nbsp;Prof. Hanchi Cheng,&nbsp;Prof. Liya Zhou\",\"doi\":\"10.1002/cnma.202400050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The preparation of high-quality perovskite thin films with long-term stability is the prerequisite for realizing efficient perovskite solar cells (PSCs). In this work, the effect of the bifunctional additive 1-ethyl-3-methylimidazolium acetate (EMIMAc) ionic liquid on defect passivation in perovskite films was systematically investigated. Both theoretical simulations and experimental results reveal that EMIMAc has a strong coordination interaction with the undercoordinated Pb<sup>2+</sup> through the lone electron pairs of carboxyl functional groups and the electron-rich imidazole moieties, leading to a decreased deep defect density of MAPbI<sub>3</sub> system. Besides, EMIMAc treatment realizes energy band alignment. As a result, the photoelectric conversion efficiency (PCE) of optimized PSCs reaches 17.07 %, and the filling factor (FF) exceeded 74.91 % which is the highest FF for hole transport layer (HTL)-free carbon-based MAPbI<sub>3</sub> devices based on TiO<sub>2</sub> electron transport layer. Moreover, the unencapsulated EMIMAc-modified device maintains approximately 89 % of its initial PCE after 30 days, which demonstrates much better air stability than control devices. These results provide effective strategies for improving the efficiency and long-term stability of HTL-free carbon-based PSCs (H-C-PSCs).</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400050\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400050","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

制备具有长期稳定性的高质量过氧化物薄膜是实现高效过氧化物太阳能电池(PSCs)的先决条件。本研究系统地探讨了双功能添加剂 1-乙基-3-甲基咪唑醋酸盐(EMIMAc)离子液体对包晶石薄膜缺陷钝化的影响。理论模拟和实验结果均表明,EMIMAc 通过羧基官能团的孤电子对和富含电子的咪唑分子与欠配位的 Pb2+ 具有很强的配位相互作用,从而降低了 MAPbI3 体系的深层缺陷密度。此外,EMIMAc 处理还实现了能带对齐。因此,优化 PSC 的光电转换效率(PCE)达到 17.07%,填充因子(FF)超过 74.91%,这是基于 TiO2 电子传输层的无空穴传输层(HTL)碳基 MAPbI3 器件的最高填充因子。此外,未封装的 EMIMAc 改性器件在 30 天后仍能保持约 89% 的初始 PCE,这表明其空气稳定性远远优于对照器件。这些结果为提高无 HTL 碳基 PSC(H-C-PSC)的效率和长期稳定性提供了有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ionic Liquid-Assisted Defect Passivation for Efficient Carbon-Based Perovskite Solar Cells with Enhanced Filling Factor

The preparation of high-quality perovskite thin films with long-term stability is the prerequisite for realizing efficient perovskite solar cells (PSCs). In this work, the effect of the bifunctional additive 1-ethyl-3-methylimidazolium acetate (EMIMAc) ionic liquid on defect passivation in perovskite films was systematically investigated. Both theoretical simulations and experimental results reveal that EMIMAc has a strong coordination interaction with the undercoordinated Pb2+ through the lone electron pairs of carboxyl functional groups and the electron-rich imidazole moieties, leading to a decreased deep defect density of MAPbI3 system. Besides, EMIMAc treatment realizes energy band alignment. As a result, the photoelectric conversion efficiency (PCE) of optimized PSCs reaches 17.07 %, and the filling factor (FF) exceeded 74.91 % which is the highest FF for hole transport layer (HTL)-free carbon-based MAPbI3 devices based on TiO2 electron transport layer. Moreover, the unencapsulated EMIMAc-modified device maintains approximately 89 % of its initial PCE after 30 days, which demonstrates much better air stability than control devices. These results provide effective strategies for improving the efficiency and long-term stability of HTL-free carbon-based PSCs (H-C-PSCs).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Front Cover: Single Source Precursor Path to 2D Materials: A Case Study of Solution-Processed Molybdenum-Rich MoSe2-x Ultrathin Nanosheets (ChemNanoMat 11/2024) Construction of PtAg-on-Au Heterostructured Nanoplates for Improved Electrocatalytic Activity of Formic Acid Oxidation New Ceramic Material Y2-xVxO3+x – Mechanochemical Synthesis and Some Physicochemical Properties Expression of Concern: Affinity of Glycan-Modified Nanodiamonds towards Lectins and Uropathogenic Escherichia Coli Front Cover: Tailoring Energy Structure of Low-Toxic Ternary Ag−Bi−S Quantum Dots through Solution-Phase Synthesis for Quantum-Dot-Sensitized Solar Cells (ChemNanoMat 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1