USmorph: 更新的星系形态自动分类框架及其在 COSMOS 星场星系中的应用

Jie Song, GuanWen Fang, Shuo Ba, Zesen Lin, Yizhou Gu, Chichun Zhou, Tao Wang, Cai-Na Hao, Guilin Liu, Hongxin Zhang, Yao Yao, Xu Kong
{"title":"USmorph: 更新的星系形态自动分类框架及其在 COSMOS 星场星系中的应用","authors":"Jie Song, GuanWen Fang, Shuo Ba, Zesen Lin, Yizhou Gu, Chichun Zhou, Tao Wang, Cai-Na Hao, Guilin Liu, Hongxin Zhang, Yao Yao, Xu Kong","doi":"10.3847/1538-4365/ad434f","DOIUrl":null,"url":null,"abstract":"Morphological classification conveys abundant information on the formation, evolution, and environment of galaxies. In this work, we refine a two-step galaxy morphological classification framework (<monospace>USmorph</monospace>), which employs a combination of unsupervised machine-learning and supervised machine-learning techniques, along with a self-consistent and robust data-preprocessing step. The updated method is applied to galaxies with <italic toggle=\"yes\">I</italic>\n<sub>mag</sub> &lt; 25 at 0.2 &lt; <italic toggle=\"yes\">z</italic> &lt; 1.2 in the COSMOS field. Based on their Hubble Space Telescope/Advanced Camera for Survey <italic toggle=\"yes\">I</italic>-band images, we classify them into five distinct morphological types: spherical (SPH, 15,200), early-type disk (17,369), late-type disk (21,143), irregular disk (IRR, 28,965), and unclassified (UNC, 17,129). In addition, we have conducted both parametric and nonparametric morphological measurements. For galaxies with stellar masses exceeding 10<sup>9</sup>\n<italic toggle=\"yes\">M</italic>\n<sub>☉</sub>, a gradual increase in effective radius from SPHs to IRRs is observed, accompanied by a decrease in the Sérsic index. Nonparametric morphologies reveal distinct distributions of galaxies across the <italic toggle=\"yes\">G</italic>ini−<italic toggle=\"yes\">M</italic>\n<sub>20</sub> and <italic toggle=\"yes\">C</italic>−<italic toggle=\"yes\">A</italic> parameter spaces for different categories. Moreover, different categories exhibit significant dissimilarity in their <italic toggle=\"yes\">G</italic>\n<sub>2</sub> and Ψ distributions. We find morphology to be strongly correlated with redshift and stellar mass. The consistency of these classification results with expected correlations among multiple parameters underscores the validity and reliability of our classification method, rendering it a valuable tool for future studies.","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"USmorph: An Updated Framework of Automatic Classification of Galaxy Morphologies and Its Application to Galaxies in the COSMOS Field\",\"authors\":\"Jie Song, GuanWen Fang, Shuo Ba, Zesen Lin, Yizhou Gu, Chichun Zhou, Tao Wang, Cai-Na Hao, Guilin Liu, Hongxin Zhang, Yao Yao, Xu Kong\",\"doi\":\"10.3847/1538-4365/ad434f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Morphological classification conveys abundant information on the formation, evolution, and environment of galaxies. In this work, we refine a two-step galaxy morphological classification framework (<monospace>USmorph</monospace>), which employs a combination of unsupervised machine-learning and supervised machine-learning techniques, along with a self-consistent and robust data-preprocessing step. The updated method is applied to galaxies with <italic toggle=\\\"yes\\\">I</italic>\\n<sub>mag</sub> &lt; 25 at 0.2 &lt; <italic toggle=\\\"yes\\\">z</italic> &lt; 1.2 in the COSMOS field. Based on their Hubble Space Telescope/Advanced Camera for Survey <italic toggle=\\\"yes\\\">I</italic>-band images, we classify them into five distinct morphological types: spherical (SPH, 15,200), early-type disk (17,369), late-type disk (21,143), irregular disk (IRR, 28,965), and unclassified (UNC, 17,129). In addition, we have conducted both parametric and nonparametric morphological measurements. For galaxies with stellar masses exceeding 10<sup>9</sup>\\n<italic toggle=\\\"yes\\\">M</italic>\\n<sub>☉</sub>, a gradual increase in effective radius from SPHs to IRRs is observed, accompanied by a decrease in the Sérsic index. Nonparametric morphologies reveal distinct distributions of galaxies across the <italic toggle=\\\"yes\\\">G</italic>ini−<italic toggle=\\\"yes\\\">M</italic>\\n<sub>20</sub> and <italic toggle=\\\"yes\\\">C</italic>−<italic toggle=\\\"yes\\\">A</italic> parameter spaces for different categories. Moreover, different categories exhibit significant dissimilarity in their <italic toggle=\\\"yes\\\">G</italic>\\n<sub>2</sub> and Ψ distributions. We find morphology to be strongly correlated with redshift and stellar mass. The consistency of these classification results with expected correlations among multiple parameters underscores the validity and reliability of our classification method, rendering it a valuable tool for future studies.\",\"PeriodicalId\":22368,\"journal\":{\"name\":\"The Astrophysical Journal Supplement Series\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4365/ad434f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad434f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

形态分类传递了大量关于星系形成、演化和环境的信息。在这项工作中,我们改进了一个两步式星系形态分类框架(USmorph),该框架结合使用了无监督机器学习和有监督机器学习技术,以及一个自洽和稳健的数据预处理步骤。更新后的方法适用于 COSMOS 星场中 0.2 < z < 1.2 的 Imag < 25 的星系。根据它们的哈勃太空望远镜/高级巡天照相机 I 波段图像,我们把它们分为五种不同的形态类型:球形(SPH,15 200 个)、早期型盘状(17 369 个)、晚期型盘状(21 143 个)、不规则盘状(IRR,28 965 个)和未分类(UNC,17 129 个)。此外,我们还进行了参数和非参数形态测量。对于恒星质量超过109M☉的星系,我们观察到其有效半径从SPHs到IRRs逐渐增大,同时Sérsic指数下降。非参数形态揭示了不同类别星系在 Gini-M20 和 C-A 参数空间的不同分布。此外,不同类别的星系在其 G2 和 Ψ 分布上也表现出明显的差异。我们发现形态与红移和恒星质量密切相关。这些分类结果与预期的多参数之间的相关性相一致,强调了我们分类方法的有效性和可靠性,使其成为未来研究的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
USmorph: An Updated Framework of Automatic Classification of Galaxy Morphologies and Its Application to Galaxies in the COSMOS Field
Morphological classification conveys abundant information on the formation, evolution, and environment of galaxies. In this work, we refine a two-step galaxy morphological classification framework (USmorph), which employs a combination of unsupervised machine-learning and supervised machine-learning techniques, along with a self-consistent and robust data-preprocessing step. The updated method is applied to galaxies with I mag < 25 at 0.2 < z < 1.2 in the COSMOS field. Based on their Hubble Space Telescope/Advanced Camera for Survey I-band images, we classify them into five distinct morphological types: spherical (SPH, 15,200), early-type disk (17,369), late-type disk (21,143), irregular disk (IRR, 28,965), and unclassified (UNC, 17,129). In addition, we have conducted both parametric and nonparametric morphological measurements. For galaxies with stellar masses exceeding 109 M , a gradual increase in effective radius from SPHs to IRRs is observed, accompanied by a decrease in the Sérsic index. Nonparametric morphologies reveal distinct distributions of galaxies across the Gini−M 20 and CA parameter spaces for different categories. Moreover, different categories exhibit significant dissimilarity in their G 2 and Ψ distributions. We find morphology to be strongly correlated with redshift and stellar mass. The consistency of these classification results with expected correlations among multiple parameters underscores the validity and reliability of our classification method, rendering it a valuable tool for future studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying Light-curve Signals with a Deep-learning-based Object Detection Algorithm. II. A General Light-curve Classification Framework Optical Variability of Gaia CRF3 Sources with Robust Statistics and the 5000 Most Variable Quasars Metrics of Astrometric Variability in the International Celestial Reference Frame. I. Statistical Analysis and Selection of the Most Variable Sources Forecast of Foreground Cleaning Strategies for AliCPT-1 Catalog of Proper Orbits for 1.25 Million Main-belt Asteroids and Discovery of 136 New Collisional Families
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1