尾部风险预测的自适应组合

Alessandra Amendola, Vincenzo Candila, Antonio Naimoli, Giuseppe Storti
{"title":"尾部风险预测的自适应组合","authors":"Alessandra Amendola, Vincenzo Candila, Antonio Naimoli, Giuseppe Storti","doi":"arxiv-2406.06235","DOIUrl":null,"url":null,"abstract":"In order to meet the increasingly stringent global standards of banking\nmanagement and regulation, several methods have been proposed in the literature\nfor forecasting tail risk measures such as the Value-at-Risk (VaR) and Expected\nShortfall (ES). However, regardless of the approach used, there are several\nsources of uncertainty, including model specifications, data-related issues and\nthe estimation procedure, which can significantly affect the accuracy of VaR\nand ES measures. Aiming to mitigate the influence of these sources of\nuncertainty and improve the predictive performance of individual models, we\npropose novel forecast combination strategies based on the Model Confidence Set\n(MCS). In particular, consistent joint VaR and ES loss functions within the MCS\nframework are used to adaptively combine forecasts generated by a wide range of\nparametric, semi-parametric, and non-parametric models. Our results reveal that\nthe proposed combined predictors provide a suitable alternative for forecasting\nrisk measures, passing the usual backtests, entering the set of superior models\nof the MCS, and usually exhibiting lower standard deviations than other model\nspecifications.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive combinations of tail-risk forecasts\",\"authors\":\"Alessandra Amendola, Vincenzo Candila, Antonio Naimoli, Giuseppe Storti\",\"doi\":\"arxiv-2406.06235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to meet the increasingly stringent global standards of banking\\nmanagement and regulation, several methods have been proposed in the literature\\nfor forecasting tail risk measures such as the Value-at-Risk (VaR) and Expected\\nShortfall (ES). However, regardless of the approach used, there are several\\nsources of uncertainty, including model specifications, data-related issues and\\nthe estimation procedure, which can significantly affect the accuracy of VaR\\nand ES measures. Aiming to mitigate the influence of these sources of\\nuncertainty and improve the predictive performance of individual models, we\\npropose novel forecast combination strategies based on the Model Confidence Set\\n(MCS). In particular, consistent joint VaR and ES loss functions within the MCS\\nframework are used to adaptively combine forecasts generated by a wide range of\\nparametric, semi-parametric, and non-parametric models. Our results reveal that\\nthe proposed combined predictors provide a suitable alternative for forecasting\\nrisk measures, passing the usual backtests, entering the set of superior models\\nof the MCS, and usually exhibiting lower standard deviations than other model\\nspecifications.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.06235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.06235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了满足日益严格的全球银行管理和监管标准,文献中提出了几种预测尾部风险的方法,如风险价值(VaR)和预期跌幅(ES)。然而,无论采用哪种方法,都存在多种不确定性来源,包括模型规格、数据相关问题和估算程序,这些都会严重影响 VaR 和 ES 度量的准确性。为了减轻这些不确定性来源的影响并提高单个模型的预测性能,我们提出了基于模型置信集(MCS)的新型预测组合策略。特别是,MCS 框架内的一致联合 VaR 和 ES 损失函数被用来自适应地组合由各种参数、半参数和非参数模型生成的预测。我们的研究结果表明,所提出的组合预测器为预测风险度量提供了一个合适的替代方案,通过了通常的回溯测试,进入了 MCS 的优越模型集,并且通常比其他模型规格表现出更低的标准偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive combinations of tail-risk forecasts
In order to meet the increasingly stringent global standards of banking management and regulation, several methods have been proposed in the literature for forecasting tail risk measures such as the Value-at-Risk (VaR) and Expected Shortfall (ES). However, regardless of the approach used, there are several sources of uncertainty, including model specifications, data-related issues and the estimation procedure, which can significantly affect the accuracy of VaR and ES measures. Aiming to mitigate the influence of these sources of uncertainty and improve the predictive performance of individual models, we propose novel forecast combination strategies based on the Model Confidence Set (MCS). In particular, consistent joint VaR and ES loss functions within the MCS framework are used to adaptively combine forecasts generated by a wide range of parametric, semi-parametric, and non-parametric models. Our results reveal that the proposed combined predictors provide a suitable alternative for forecasting risk measures, passing the usual backtests, entering the set of superior models of the MCS, and usually exhibiting lower standard deviations than other model specifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeFi Arbitrage in Hedged Liquidity Tokens Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity Claims processing and costs under capacity constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1