具有微调内在控制功能的探索性居住飞行器

IF 1.9 3区 工程技术 Q3 MECHANICS Meccanica Pub Date : 2024-06-19 DOI:10.1007/s11012-024-01839-6
Andrea Manuello, Amedeo Manuello, Giuseppe Carlo Marano
{"title":"具有微调内在控制功能的探索性居住飞行器","authors":"Andrea Manuello, Amedeo Manuello, Giuseppe Carlo Marano","doi":"10.1007/s11012-024-01839-6","DOIUrl":null,"url":null,"abstract":"<p>Considering the space environment and its critical issues and consequent risks, the challenge is to define the way and tools with which future astronauts will be able to act, live and work in space and, in particular on the Moon and Mars, exploiting, at the state of art, knowledge of innovative science, engineering and technology. On the Moon and Mars, the most obvious environmental factors are extreme temperature fluctuations, low gravity and the virtual absence of atmosphere and magnetosphere. The health of a human body can be damaged by reduced values of gravity. Due to the reduced gravity on the Moon and Mars, human bones and muscles are unloaded and begin to weaken. It increases the risk of bone fractures and atrophied muscles for astronauts returning to Earth from prolonged missions. The magnetosphere and atmosphere on Earth shield from much of the dangerous solar and cosmic radiation. Radiation with extremely high energies can damage even living tissue. The surface of the Moon and Mars has been crushed by millions of impacts of celestial bodies such as asteroids, leaving a layer of regolith that could be very deep depending on the areas of the planets. The habitation module, described in this paper, is carried by a vehicle equipped with two pairs of compass shaped legs that act as supports for the habitation module capable of maintaining a certain controlled height with respect to the ground as well as a horizontal attitude, during the movement of the compass. A system of ropes wound on pulleys allows to control the height of the habitat with respect to the ground, control the structure in movement, descent and ascent. The habitat can also be lowered to the ground. The geometry of the shape of the pulleys, around which the ropes are wound, is determined in such a way that the habitation module remains at a certain height during the movement defined by the two compass-shaped advancement supports. The paper describes and analyzes the movement of the pulleys during the entire phase of the movement of the habitation module and their geometric shape is discussed.</p>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploratory habitation vehicles with trim intrinsic control\",\"authors\":\"Andrea Manuello, Amedeo Manuello, Giuseppe Carlo Marano\",\"doi\":\"10.1007/s11012-024-01839-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Considering the space environment and its critical issues and consequent risks, the challenge is to define the way and tools with which future astronauts will be able to act, live and work in space and, in particular on the Moon and Mars, exploiting, at the state of art, knowledge of innovative science, engineering and technology. On the Moon and Mars, the most obvious environmental factors are extreme temperature fluctuations, low gravity and the virtual absence of atmosphere and magnetosphere. The health of a human body can be damaged by reduced values of gravity. Due to the reduced gravity on the Moon and Mars, human bones and muscles are unloaded and begin to weaken. It increases the risk of bone fractures and atrophied muscles for astronauts returning to Earth from prolonged missions. The magnetosphere and atmosphere on Earth shield from much of the dangerous solar and cosmic radiation. Radiation with extremely high energies can damage even living tissue. The surface of the Moon and Mars has been crushed by millions of impacts of celestial bodies such as asteroids, leaving a layer of regolith that could be very deep depending on the areas of the planets. The habitation module, described in this paper, is carried by a vehicle equipped with two pairs of compass shaped legs that act as supports for the habitation module capable of maintaining a certain controlled height with respect to the ground as well as a horizontal attitude, during the movement of the compass. A system of ropes wound on pulleys allows to control the height of the habitat with respect to the ground, control the structure in movement, descent and ascent. The habitat can also be lowered to the ground. The geometry of the shape of the pulleys, around which the ropes are wound, is determined in such a way that the habitation module remains at a certain height during the movement defined by the two compass-shaped advancement supports. The paper describes and analyzes the movement of the pulleys during the entire phase of the movement of the habitation module and their geometric shape is discussed.</p>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11012-024-01839-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11012-024-01839-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑到空间环境及其关键问题和随之而来的风险,所面临的挑战是确定未来宇航员能够在空间,特别是在月球和火星上行动、生活和工作的方式和工具,利用最新的创新科学、工程和技术知识。在月球和火星上,最明显的环境因素是极端的温度波动、低重力以及几乎没有大气层和磁层。重力值降低会损害人体健康。由于月球和火星上的重力降低,人体骨骼和肌肉失去负荷,开始变得脆弱。这增加了执行完长期任务返回地球的宇航员骨折和肌肉萎缩的风险。地球上的磁层和大气层屏蔽了大部分危险的太阳辐射和宇宙辐射。能量极高的辐射甚至会损害生物组织。月球和火星的表面经过小行星等天体数百万次撞击的碾压,留下了一层可能很深的碎石层,具体深度取决于行星所在的区域。本文所述的居住舱由一个装有两对罗盘形支腿的飞行器运载,这两对罗盘形支腿作为居住舱的支撑,能够在罗盘运动过程中保持相对于地面的一定可控高度和水平姿态。滑轮上缠绕的绳索系统可以控制居住舱相对于地面的高度,控制结构的移动、下降和上升。栖息地还可以降到地面。绳索绕在滑轮上的几何形状是这样确定的,即在两个罗盘形前进支架确定的运动过程中,居住舱保持在一定高度。本文描述并分析了滑轮在居住舱运动的整个阶段的运动情况,并讨论了滑轮的几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploratory habitation vehicles with trim intrinsic control

Considering the space environment and its critical issues and consequent risks, the challenge is to define the way and tools with which future astronauts will be able to act, live and work in space and, in particular on the Moon and Mars, exploiting, at the state of art, knowledge of innovative science, engineering and technology. On the Moon and Mars, the most obvious environmental factors are extreme temperature fluctuations, low gravity and the virtual absence of atmosphere and magnetosphere. The health of a human body can be damaged by reduced values of gravity. Due to the reduced gravity on the Moon and Mars, human bones and muscles are unloaded and begin to weaken. It increases the risk of bone fractures and atrophied muscles for astronauts returning to Earth from prolonged missions. The magnetosphere and atmosphere on Earth shield from much of the dangerous solar and cosmic radiation. Radiation with extremely high energies can damage even living tissue. The surface of the Moon and Mars has been crushed by millions of impacts of celestial bodies such as asteroids, leaving a layer of regolith that could be very deep depending on the areas of the planets. The habitation module, described in this paper, is carried by a vehicle equipped with two pairs of compass shaped legs that act as supports for the habitation module capable of maintaining a certain controlled height with respect to the ground as well as a horizontal attitude, during the movement of the compass. A system of ropes wound on pulleys allows to control the height of the habitat with respect to the ground, control the structure in movement, descent and ascent. The habitat can also be lowered to the ground. The geometry of the shape of the pulleys, around which the ropes are wound, is determined in such a way that the habitation module remains at a certain height during the movement defined by the two compass-shaped advancement supports. The paper describes and analyzes the movement of the pulleys during the entire phase of the movement of the habitation module and their geometric shape is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
期刊最新文献
Investigation of droplet collision characteristics with moving film and its comparison with stationary film: unsteady and 3D CLSVOF method Compound control method for reliability of the robotic arms with clearance joint Multiscale topology optimization of anisotropic multilayer periodic structures based on the isogeometric analysis method CFD and ray tracing analysis of a discrete nozzle for laser metal deposition Design and performance investigation of a sliding-mode adaptive proportional–integral–derivative control for cable-breakage scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1