Amylovis-201 是一种新型双目标配体,既是一种抗淀粉样蛋白生成化合物,又是σ1伴侣蛋白的强效激动剂

IF 14.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY Acta Pharmaceutica Sinica. B Pub Date : 2024-10-01 DOI:10.1016/j.apsb.2024.06.013
{"title":"Amylovis-201 是一种新型双目标配体,既是一种抗淀粉样蛋白生成化合物,又是σ1伴侣蛋白的强效激动剂","authors":"","doi":"10.1016/j.apsb.2024.06.013","DOIUrl":null,"url":null,"abstract":"<div><div>The aggregation of Amyloid-<em>β</em> (A<em>β</em>) peptides is associated with neurodegeneration in Alzheimer's disease (AD). We previously identified novel naphtalene derivatives, including the lead compound Amylovis-201, able to form thermodynamically stable complexes with A<em>β</em> species, peptides and fibrils. As the drug showed a chemical scaffold coherent for an effective interaction with the <em>σ</em><sub>1</sub> receptor chaperone and as <em>σ</em><sub>1</sub> agonists are currently developed as potent neuroprotectants in AD, we investigated the pharmacological action of Amylovis-201 on the <em>σ</em><sub>1</sub> receptor. We report that Amylovis-201 is a potent <em>σ</em><sub>1</sub> agonist by several <em>in silico</em>, <em>in vitro</em> and <em>in vivo</em> assays and that its anti-amnesic and neuroprotective effects involve a pharmacological action at <em>σ</em><sub>1</sub> receptors. Furthermore, we show for the first time that classical <em>σ</em><sub>1</sub> receptor agonist (PRE-084), and antagonist (NE-100) are able to interact and disaggregate A<em>β</em><sub>25–35</sub> fibrils. Interestingly, Amylovis-201 was the only compound inhibiting A<em>β</em><sub>25–35</sub> aggregates formation. Our results therefore highlight a dual action of Amylovis-201 as anti-aggregating agent and <em>σ</em><sub>1</sub> receptor agonist that could be highly effective in long-term treatment against neurodegeneration in AD.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 10","pages":"Pages 4345-4359"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amylovis-201 is a new dual-target ligand, acting as an anti-amyloidogenic compound and a potent agonist of the σ1 chaperone protein\",\"authors\":\"\",\"doi\":\"10.1016/j.apsb.2024.06.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aggregation of Amyloid-<em>β</em> (A<em>β</em>) peptides is associated with neurodegeneration in Alzheimer's disease (AD). We previously identified novel naphtalene derivatives, including the lead compound Amylovis-201, able to form thermodynamically stable complexes with A<em>β</em> species, peptides and fibrils. As the drug showed a chemical scaffold coherent for an effective interaction with the <em>σ</em><sub>1</sub> receptor chaperone and as <em>σ</em><sub>1</sub> agonists are currently developed as potent neuroprotectants in AD, we investigated the pharmacological action of Amylovis-201 on the <em>σ</em><sub>1</sub> receptor. We report that Amylovis-201 is a potent <em>σ</em><sub>1</sub> agonist by several <em>in silico</em>, <em>in vitro</em> and <em>in vivo</em> assays and that its anti-amnesic and neuroprotective effects involve a pharmacological action at <em>σ</em><sub>1</sub> receptors. Furthermore, we show for the first time that classical <em>σ</em><sub>1</sub> receptor agonist (PRE-084), and antagonist (NE-100) are able to interact and disaggregate A<em>β</em><sub>25–35</sub> fibrils. Interestingly, Amylovis-201 was the only compound inhibiting A<em>β</em><sub>25–35</sub> aggregates formation. Our results therefore highlight a dual action of Amylovis-201 as anti-aggregating agent and <em>σ</em><sub>1</sub> receptor agonist that could be highly effective in long-term treatment against neurodegeneration in AD.</div></div>\",\"PeriodicalId\":6906,\"journal\":{\"name\":\"Acta Pharmaceutica Sinica. B\",\"volume\":\"14 10\",\"pages\":\"Pages 4345-4359\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmaceutica Sinica. B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211383524002442\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383524002442","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

淀粉样蛋白(A)肽的聚集与阿尔茨海默病(AD)的神经变性有关。我们之前发现了新型萘衍生物,包括先导化合物 Amylovis-201,它们能够与淀粉样蛋白、肽和纤维形成热力学稳定的复合物。由于该药物显示出与受体伴侣有效相互作用的化学支架,而且激动剂目前正被开发为治疗注意力缺失症的强效神经保护剂,因此我们研究了 Amylovis-201 对受体的药理作用。我们报告说,Amylovis-201 是一种强效受体激动剂,其抗失忆和神经保护作用涉及受体的药理作用。此外,我们首次发现经典受体激动剂(PRE-084)和拮抗剂(NE-100)能够相互作用并分解 A 纤维。有趣的是,Amylovis-201 是唯一抑制 A 聚集体形成的化合物。因此,我们的研究结果凸显了Amylovis-201作为抗聚集剂和受体激动剂的双重作用,它在长期治疗AD神经退行性病变方面可能非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amylovis-201 is a new dual-target ligand, acting as an anti-amyloidogenic compound and a potent agonist of the σ1 chaperone protein
The aggregation of Amyloid-β (Aβ) peptides is associated with neurodegeneration in Alzheimer's disease (AD). We previously identified novel naphtalene derivatives, including the lead compound Amylovis-201, able to form thermodynamically stable complexes with Aβ species, peptides and fibrils. As the drug showed a chemical scaffold coherent for an effective interaction with the σ1 receptor chaperone and as σ1 agonists are currently developed as potent neuroprotectants in AD, we investigated the pharmacological action of Amylovis-201 on the σ1 receptor. We report that Amylovis-201 is a potent σ1 agonist by several in silico, in vitro and in vivo assays and that its anti-amnesic and neuroprotective effects involve a pharmacological action at σ1 receptors. Furthermore, we show for the first time that classical σ1 receptor agonist (PRE-084), and antagonist (NE-100) are able to interact and disaggregate Aβ25–35 fibrils. Interestingly, Amylovis-201 was the only compound inhibiting Aβ25–35 aggregates formation. Our results therefore highlight a dual action of Amylovis-201 as anti-aggregating agent and σ1 receptor agonist that could be highly effective in long-term treatment against neurodegeneration in AD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Pharmaceutica Sinica. B
Acta Pharmaceutica Sinica. B Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍: The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB). Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics. A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.
期刊最新文献
Table of Contents Characteristic roadmap of linker governs the rational design of PROTACs Targeted isolation of antiviral cinnamoylphloroglucinol-terpene adducts from Cleistocalyx operculatus by building blocks-based molecular networking approach A systematic, updated review of Xuezhikang, a domestically developed lipid-lowering drug, in the application of cardiovascular diseases Reprogramming tumor-associated macrophages and inhibiting tumor neovascularization by targeting MANF–HSF1–HSP70-1 pathway: An effective treatment for hepatocellular carcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1