{"title":"偶氮苯基糖环的立体选择性合成","authors":"Jinbiao Jiao, Juan Xie","doi":"10.1055/s-0043-1774911","DOIUrl":null,"url":null,"abstract":"<p>Carbohydrate-based macrocyclic compounds are of particular interest because of their multifunctionality, their unique structural and physicochemical properties as well as their potential applications in chemistry, biology, and drug discovery. Introducing a molecular photoswitch into the skeleton of glycomacrocycles makes possible the reversible control of properties of the resulting photoswitchable glycomacrocycles by light illumination. Therefore, development of stereoselective synthesis of this class of glycomacrocycles is of great interest. Two new azobenzene-based glycomacrocycles have been synthesized through an intramolecular glycosylation approach. Excellent 1,2-<i>cis</i> stereoselectivity has been achieved for the mannosylation.</p> ","PeriodicalId":501298,"journal":{"name":"Synthesis","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stereoselective Synthesis of Azobenzene-Based Glycomacrocycles\",\"authors\":\"Jinbiao Jiao, Juan Xie\",\"doi\":\"10.1055/s-0043-1774911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbohydrate-based macrocyclic compounds are of particular interest because of their multifunctionality, their unique structural and physicochemical properties as well as their potential applications in chemistry, biology, and drug discovery. Introducing a molecular photoswitch into the skeleton of glycomacrocycles makes possible the reversible control of properties of the resulting photoswitchable glycomacrocycles by light illumination. Therefore, development of stereoselective synthesis of this class of glycomacrocycles is of great interest. Two new azobenzene-based glycomacrocycles have been synthesized through an intramolecular glycosylation approach. Excellent 1,2-<i>cis</i> stereoselectivity has been achieved for the mannosylation.</p> \",\"PeriodicalId\":501298,\"journal\":{\"name\":\"Synthesis\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0043-1774911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0043-1774911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stereoselective Synthesis of Azobenzene-Based Glycomacrocycles
Carbohydrate-based macrocyclic compounds are of particular interest because of their multifunctionality, their unique structural and physicochemical properties as well as their potential applications in chemistry, biology, and drug discovery. Introducing a molecular photoswitch into the skeleton of glycomacrocycles makes possible the reversible control of properties of the resulting photoswitchable glycomacrocycles by light illumination. Therefore, development of stereoselective synthesis of this class of glycomacrocycles is of great interest. Two new azobenzene-based glycomacrocycles have been synthesized through an intramolecular glycosylation approach. Excellent 1,2-cis stereoselectivity has been achieved for the mannosylation.