操作员深度平滑隐含波动率

Lukas Gonon, Antoine Jacquier, Ruben Wiedemann
{"title":"操作员深度平滑隐含波动率","authors":"Lukas Gonon, Antoine Jacquier, Ruben Wiedemann","doi":"arxiv-2406.11520","DOIUrl":null,"url":null,"abstract":"We devise a novel method for implied volatility smoothing based on neural\noperators. The goal of implied volatility smoothing is to construct a smooth\nsurface that links the collection of prices observed at a specific instant on a\ngiven option market. Such price data arises highly dynamically in ever-changing\nspatial configurations, which poses a major limitation to foundational machine\nlearning approaches using classical neural networks. While large models in\nlanguage and image processing deliver breakthrough results on vast corpora of\nraw data, in financial engineering the generalization from big historical\ndatasets has been hindered by the need for considerable data pre-processing. In\nparticular, implied volatility smoothing has remained an instance-by-instance,\nhands-on process both for neural network-based and traditional parametric\nstrategies. Our general operator deep smoothing approach, instead, directly\nmaps observed data to smoothed surfaces. We adapt the graph neural operator\narchitecture to do so with high accuracy on ten years of raw intraday S&P 500\noptions data, using a single set of weights. The trained operator adheres to\ncritical no-arbitrage constraints and is robust with respect to subsampling of\ninputs (occurring in practice in the context of outlier removal). We provide\nextensive historical benchmarks and showcase the generalization capability of\nour approach in a comparison with SVI, an industry standard parametrization for\nimplied volatility. The operator deep smoothing approach thus opens up the use\nof neural networks on large historical datasets in financial engineering.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator Deep Smoothing for Implied Volatility\",\"authors\":\"Lukas Gonon, Antoine Jacquier, Ruben Wiedemann\",\"doi\":\"arxiv-2406.11520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We devise a novel method for implied volatility smoothing based on neural\\noperators. The goal of implied volatility smoothing is to construct a smooth\\nsurface that links the collection of prices observed at a specific instant on a\\ngiven option market. Such price data arises highly dynamically in ever-changing\\nspatial configurations, which poses a major limitation to foundational machine\\nlearning approaches using classical neural networks. While large models in\\nlanguage and image processing deliver breakthrough results on vast corpora of\\nraw data, in financial engineering the generalization from big historical\\ndatasets has been hindered by the need for considerable data pre-processing. In\\nparticular, implied volatility smoothing has remained an instance-by-instance,\\nhands-on process both for neural network-based and traditional parametric\\nstrategies. Our general operator deep smoothing approach, instead, directly\\nmaps observed data to smoothed surfaces. We adapt the graph neural operator\\narchitecture to do so with high accuracy on ten years of raw intraday S&P 500\\noptions data, using a single set of weights. The trained operator adheres to\\ncritical no-arbitrage constraints and is robust with respect to subsampling of\\ninputs (occurring in practice in the context of outlier removal). We provide\\nextensive historical benchmarks and showcase the generalization capability of\\nour approach in a comparison with SVI, an industry standard parametrization for\\nimplied volatility. The operator deep smoothing approach thus opens up the use\\nof neural networks on large historical datasets in financial engineering.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.11520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.11520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们设计了一种基于神经操作器的隐含波动率平滑新方法。隐含波动率平滑法的目标是构建一个平滑曲面,将特定时刻在给定期权市场上观察到的价格集合联系起来。这种价格数据是在不断变化的空间配置中高度动态产生的,这给使用经典神经网络的基础机器学习方法带来了很大的限制。语言和图像处理领域的大型模型在大量原始数据的基础上取得了突破性的成果,而在金融工程领域,由于需要进行大量的数据预处理,从大型历史数据集中进行归纳的工作受到了阻碍。特别是隐含波动率的平滑处理,对于基于神经网络的策略和传统参数策略来说,仍然是一个逐个实例的实践过程。而我们的通用算子深度平滑方法可以直接将观察到的数据映射到平滑表面。我们调整了图神经算子架构,使用单组权重对十年的标准普尔 500 指数日内原始期权数据进行了高精度处理。训练有素的算子遵守无套利约束条件,对输入的子采样(在去除离群值的实践中经常出现)具有鲁棒性。我们提供了广泛的历史基准,并通过与 SVI(一种用于预测波动率的行业标准参数)的比较,展示了我们方法的泛化能力。因此,算子深度平滑方法开启了神经网络在金融工程大型历史数据集上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Operator Deep Smoothing for Implied Volatility
We devise a novel method for implied volatility smoothing based on neural operators. The goal of implied volatility smoothing is to construct a smooth surface that links the collection of prices observed at a specific instant on a given option market. Such price data arises highly dynamically in ever-changing spatial configurations, which poses a major limitation to foundational machine learning approaches using classical neural networks. While large models in language and image processing deliver breakthrough results on vast corpora of raw data, in financial engineering the generalization from big historical datasets has been hindered by the need for considerable data pre-processing. In particular, implied volatility smoothing has remained an instance-by-instance, hands-on process both for neural network-based and traditional parametric strategies. Our general operator deep smoothing approach, instead, directly maps observed data to smoothed surfaces. We adapt the graph neural operator architecture to do so with high accuracy on ten years of raw intraday S&P 500 options data, using a single set of weights. The trained operator adheres to critical no-arbitrage constraints and is robust with respect to subsampling of inputs (occurring in practice in the context of outlier removal). We provide extensive historical benchmarks and showcase the generalization capability of our approach in a comparison with SVI, an industry standard parametrization for implied volatility. The operator deep smoothing approach thus opens up the use of neural networks on large historical datasets in financial engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1