通过掺杂钼促进活性氧化镍的形成,实现高效氧气进化

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-06-12 DOI:10.1039/D4CY00314D
Liuqing Wang, Jinsheng Li, Qinglei Meng, Meiling Xiao, Changpeng Liu, Wei Xing and Jianbing Zhu
{"title":"通过掺杂钼促进活性氧化镍的形成,实现高效氧气进化","authors":"Liuqing Wang, Jinsheng Li, Qinglei Meng, Meiling Xiao, Changpeng Liu, Wei Xing and Jianbing Zhu","doi":"10.1039/D4CY00314D","DOIUrl":null,"url":null,"abstract":"<p >The insufficient performance of non-noble metal catalysts in alkaline media is a prominent issue that limits the widespread adoption of electrocatalytic water splitting. In this study, we present an efficient Mo doping strategy to boost the electrocatalytic performance of NiFe layered double hydroxide (LDH) through modulating the electronic structure of active Ni sites. The optimized Mo doped NiFe-LDH (denoted as NiFeMo-2) exhibits significantly improved activity, showing a smaller overpotential of 262 mV at 10 mA cm<small><sup>−2</sup></small> compared to NiFe-LDH (344 mV). X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) spectra demonstrate that the incorporation of Mo not only increases the electron cloud density of Ni, but also induces more oxygen vacancies. Due to these structural modifications, the oxygen evolution reaction (OER) kinetics is dramatically enhanced, confirmed by <em>in situ</em> electrochemical impedance spectroscopy (EIS). Moreover, <em>in situ</em> Raman spectroscopy shows that the Mo doping can facilitate the formation of active NiOOH species at a lower potential, thus accelerating the OER kinetics. The <em>in situ</em> differential electrochemical mass spectrometry (DEMS) technique with <small><sup>18</sup></small>O isotope labelling, tetraalkylammonium cation (TMA<small><sup>+</sup></small>) chemical probe, and ethanol oxidation reaction suggest that the NiFeMo-LDH catalyst primarily follows the adsorbate evolution mechanism (AEM) pathway, the promoted dehydrogenation process with the modulation of *OH adsorption. This study reports a high-performance non-noble metal OER electrocatalyst and unveils the origins of metal doping to enhance the OER kinetics.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facilitating active NiOOH formation via Mo doping towards high-efficiency oxygen evolution†\",\"authors\":\"Liuqing Wang, Jinsheng Li, Qinglei Meng, Meiling Xiao, Changpeng Liu, Wei Xing and Jianbing Zhu\",\"doi\":\"10.1039/D4CY00314D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The insufficient performance of non-noble metal catalysts in alkaline media is a prominent issue that limits the widespread adoption of electrocatalytic water splitting. In this study, we present an efficient Mo doping strategy to boost the electrocatalytic performance of NiFe layered double hydroxide (LDH) through modulating the electronic structure of active Ni sites. The optimized Mo doped NiFe-LDH (denoted as NiFeMo-2) exhibits significantly improved activity, showing a smaller overpotential of 262 mV at 10 mA cm<small><sup>−2</sup></small> compared to NiFe-LDH (344 mV). X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) spectra demonstrate that the incorporation of Mo not only increases the electron cloud density of Ni, but also induces more oxygen vacancies. Due to these structural modifications, the oxygen evolution reaction (OER) kinetics is dramatically enhanced, confirmed by <em>in situ</em> electrochemical impedance spectroscopy (EIS). Moreover, <em>in situ</em> Raman spectroscopy shows that the Mo doping can facilitate the formation of active NiOOH species at a lower potential, thus accelerating the OER kinetics. The <em>in situ</em> differential electrochemical mass spectrometry (DEMS) technique with <small><sup>18</sup></small>O isotope labelling, tetraalkylammonium cation (TMA<small><sup>+</sup></small>) chemical probe, and ethanol oxidation reaction suggest that the NiFeMo-LDH catalyst primarily follows the adsorbate evolution mechanism (AEM) pathway, the promoted dehydrogenation process with the modulation of *OH adsorption. This study reports a high-performance non-noble metal OER electrocatalyst and unveils the origins of metal doping to enhance the OER kinetics.</p>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy00314d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy00314d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

非贵金属催化剂在碱性介质中的性能不足是限制电催化分水技术广泛应用的一个突出问题。在本研究中,我们提出了一种高效的钼掺杂策略,通过调节活性镍位点的电子结构来提高镍铁层双氢氧化物(LDH)的电催化性能。优化后的掺杂钼的镍铁层双氢氧化物(NiFe-LDH,代号为 NiFeMo-2)的活性得到了显著提高,与镍铁层双氢氧化物(NiFe-LDH,代号为 344 mV)相比,在 10 mA cm-2 的条件下,过电位仅为 262 mV。X 射线光电子能谱(XPS)和电子顺磁共振(EPR)光谱表明,掺入 Mo 不仅增加了镍的电子云密度,还诱导了更多的氧空位。原位电化学阻抗光谱(EIS)证实,由于这些结构改性,氧进化反应(OER)动力学显著增强。此外,原位拉曼光谱显示,钼掺杂能在较低电位下促进活性 NiOOH 物种的形成,从而加速了氧演化反应的动力学过程。利用 18O 同位素标记、四烷基铵阳离子(TMA+)化学探针和乙醇氧化反应进行的原位差分电化学质谱(DEMS)技术表明,NiFeMo-LDH 催化剂主要遵循吸附剂进化机制(AEM)途径,即在*OH 吸附调控下的促进脱氢过程。本研究报告了一种高性能非贵金属 OER 电催化剂,并揭示了金属掺杂增强 OER 动力学的起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facilitating active NiOOH formation via Mo doping towards high-efficiency oxygen evolution†

The insufficient performance of non-noble metal catalysts in alkaline media is a prominent issue that limits the widespread adoption of electrocatalytic water splitting. In this study, we present an efficient Mo doping strategy to boost the electrocatalytic performance of NiFe layered double hydroxide (LDH) through modulating the electronic structure of active Ni sites. The optimized Mo doped NiFe-LDH (denoted as NiFeMo-2) exhibits significantly improved activity, showing a smaller overpotential of 262 mV at 10 mA cm−2 compared to NiFe-LDH (344 mV). X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) spectra demonstrate that the incorporation of Mo not only increases the electron cloud density of Ni, but also induces more oxygen vacancies. Due to these structural modifications, the oxygen evolution reaction (OER) kinetics is dramatically enhanced, confirmed by in situ electrochemical impedance spectroscopy (EIS). Moreover, in situ Raman spectroscopy shows that the Mo doping can facilitate the formation of active NiOOH species at a lower potential, thus accelerating the OER kinetics. The in situ differential electrochemical mass spectrometry (DEMS) technique with 18O isotope labelling, tetraalkylammonium cation (TMA+) chemical probe, and ethanol oxidation reaction suggest that the NiFeMo-LDH catalyst primarily follows the adsorbate evolution mechanism (AEM) pathway, the promoted dehydrogenation process with the modulation of *OH adsorption. This study reports a high-performance non-noble metal OER electrocatalyst and unveils the origins of metal doping to enhance the OER kinetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Back cover Hydrolysis of ammonia borane for green hydrogen production over a Pd/C3N4 nanocatalyst synthesized by electron beam irradiation Back cover Combined experimental and molecular dynamics approach towards a rational design of the YfeX biocatalyst for enhanced carbene transferase reactivity† ZIF-8 pyrolized N-doped carbon-supported iron catalysts for enhanced CO2 hydrogenation activity to valuable hydrocarbons†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1