{"title":"TeleStroke:利用联合学习和 YOLOv8 在边缘设备上进行实时中风检测","authors":"Abdussalam Elhanashi, Pierpaolo Dini, Sergio Saponara, Qinghe Zheng","doi":"10.1007/s11554-024-01500-1","DOIUrl":null,"url":null,"abstract":"<p>Stroke, a life-threatening medical condition, necessitates immediate intervention for optimal outcomes. Timely diagnosis and treatment play a crucial role in reducing mortality and minimizing long-term disabilities associated with strokes. This study presents a novel approach to meet these critical needs by proposing a real-time stroke detection system based on deep learning (DL) with utilization of federated learning (FL) to enhance accuracy and privacy preservation. The primary objective of this research is to develop an efficient and accurate model capable of discerning between stroke and non-stroke cases in real-time, facilitating healthcare professionals in making well-informed decisions. Traditional stroke detection methods relying on manual interpretation of medical images are time-consuming and prone to human error. DL techniques have shown promise in automating this process, yet challenges persist due to the need for extensive and diverse datasets and privacy concerns. To address these challenges, our methodology involves utilization and assessing YOLOv8 models on comprehensive datasets comprising both stroke and non-stroke based on the facial paralysis of the individuals from the images. This training process empowers the model to grasp intricate patterns and features associated with strokes, thereby enhancing its diagnostic accuracy. In addition, federated learning, a decentralized training approach, is employed to bolster privacy while preserving model performance. This approach enables the model to learn from data distributed across various clients without compromising sensitive patient information. The proposed methodology has been implemented on NVIDIA platforms, utilizing their advanced GPU capabilities to enable real-time processing and analysis. This optimized model has the potential to revolutionize stroke diagnosis and patient care, promising to save lives and elevate the quality of healthcare services in the neurology field.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"61 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TeleStroke: real-time stroke detection with federated learning and YOLOv8 on edge devices\",\"authors\":\"Abdussalam Elhanashi, Pierpaolo Dini, Sergio Saponara, Qinghe Zheng\",\"doi\":\"10.1007/s11554-024-01500-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stroke, a life-threatening medical condition, necessitates immediate intervention for optimal outcomes. Timely diagnosis and treatment play a crucial role in reducing mortality and minimizing long-term disabilities associated with strokes. This study presents a novel approach to meet these critical needs by proposing a real-time stroke detection system based on deep learning (DL) with utilization of federated learning (FL) to enhance accuracy and privacy preservation. The primary objective of this research is to develop an efficient and accurate model capable of discerning between stroke and non-stroke cases in real-time, facilitating healthcare professionals in making well-informed decisions. Traditional stroke detection methods relying on manual interpretation of medical images are time-consuming and prone to human error. DL techniques have shown promise in automating this process, yet challenges persist due to the need for extensive and diverse datasets and privacy concerns. To address these challenges, our methodology involves utilization and assessing YOLOv8 models on comprehensive datasets comprising both stroke and non-stroke based on the facial paralysis of the individuals from the images. This training process empowers the model to grasp intricate patterns and features associated with strokes, thereby enhancing its diagnostic accuracy. In addition, federated learning, a decentralized training approach, is employed to bolster privacy while preserving model performance. This approach enables the model to learn from data distributed across various clients without compromising sensitive patient information. The proposed methodology has been implemented on NVIDIA platforms, utilizing their advanced GPU capabilities to enable real-time processing and analysis. This optimized model has the potential to revolutionize stroke diagnosis and patient care, promising to save lives and elevate the quality of healthcare services in the neurology field.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01500-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01500-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
TeleStroke: real-time stroke detection with federated learning and YOLOv8 on edge devices
Stroke, a life-threatening medical condition, necessitates immediate intervention for optimal outcomes. Timely diagnosis and treatment play a crucial role in reducing mortality and minimizing long-term disabilities associated with strokes. This study presents a novel approach to meet these critical needs by proposing a real-time stroke detection system based on deep learning (DL) with utilization of federated learning (FL) to enhance accuracy and privacy preservation. The primary objective of this research is to develop an efficient and accurate model capable of discerning between stroke and non-stroke cases in real-time, facilitating healthcare professionals in making well-informed decisions. Traditional stroke detection methods relying on manual interpretation of medical images are time-consuming and prone to human error. DL techniques have shown promise in automating this process, yet challenges persist due to the need for extensive and diverse datasets and privacy concerns. To address these challenges, our methodology involves utilization and assessing YOLOv8 models on comprehensive datasets comprising both stroke and non-stroke based on the facial paralysis of the individuals from the images. This training process empowers the model to grasp intricate patterns and features associated with strokes, thereby enhancing its diagnostic accuracy. In addition, federated learning, a decentralized training approach, is employed to bolster privacy while preserving model performance. This approach enables the model to learn from data distributed across various clients without compromising sensitive patient information. The proposed methodology has been implemented on NVIDIA platforms, utilizing their advanced GPU capabilities to enable real-time processing and analysis. This optimized model has the potential to revolutionize stroke diagnosis and patient care, promising to save lives and elevate the quality of healthcare services in the neurology field.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.