熵滤波器的新型流水线结构

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Real-Time Image Processing Pub Date : 2024-06-23 DOI:10.1007/s11554-024-01498-6
Dat Ngo, Bongsoon Kang
{"title":"熵滤波器的新型流水线结构","authors":"Dat Ngo, Bongsoon Kang","doi":"10.1007/s11554-024-01498-6","DOIUrl":null,"url":null,"abstract":"<p>In computer vision, entropy is a measure adopted to characterize the texture information of a grayscale image, and an entropy filter is a fundamental operation used to calculate local entropy. However, this filter is computationally intensive and demands an efficient means of implementation. Additionally, with the foreseeable end of Moore’s law, there is a growing trend towards hardware offloading to increase computing power. In line with this trend, we propose a novel method for the calculation of local entropy and introduce a corresponding pipelined architecture. Under the proposed method, a sliding window of pixels undergoes three steps: sorting, adjacent difference calculation, and pipelined entropy calculation. Compared with a conventional design, implementation results on a Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC device demonstrate that our pipelined architecture can reach a maximum throughput of handling 764.526 megapixels per second while achieving <span>\\(2.4\\times\\)</span> and <span>\\(2.9\\times\\)</span> reductions in resource utilization and <span>\\(1.1\\times\\)</span> reduction in power consumption.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel pipelined architecture of entropy filter\",\"authors\":\"Dat Ngo, Bongsoon Kang\",\"doi\":\"10.1007/s11554-024-01498-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In computer vision, entropy is a measure adopted to characterize the texture information of a grayscale image, and an entropy filter is a fundamental operation used to calculate local entropy. However, this filter is computationally intensive and demands an efficient means of implementation. Additionally, with the foreseeable end of Moore’s law, there is a growing trend towards hardware offloading to increase computing power. In line with this trend, we propose a novel method for the calculation of local entropy and introduce a corresponding pipelined architecture. Under the proposed method, a sliding window of pixels undergoes three steps: sorting, adjacent difference calculation, and pipelined entropy calculation. Compared with a conventional design, implementation results on a Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC device demonstrate that our pipelined architecture can reach a maximum throughput of handling 764.526 megapixels per second while achieving <span>\\\\(2.4\\\\times\\\\)</span> and <span>\\\\(2.9\\\\times\\\\)</span> reductions in resource utilization and <span>\\\\(1.1\\\\times\\\\)</span> reduction in power consumption.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01498-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01498-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在计算机视觉领域,熵是用来描述灰度图像纹理信息的一种度量,而熵滤波器是用来计算局部熵的基本操作。然而,这种滤波器的计算量很大,需要高效的实现方法。此外,随着摩尔定律的终结,越来越多的人倾向于通过硬件卸载来提高计算能力。顺应这一趋势,我们提出了一种计算局部熵的新方法,并引入了相应的流水线架构。根据提出的方法,像素滑动窗口需要经过三个步骤:排序、相邻差计算和流水线熵计算。与传统设计相比,在Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC器件上的实现结果表明,我们的流水线架构可以达到每秒处理764.526百万像素的最大吞吐量,同时实现了(2.4次)和(2.9次)资源利用率的降低和(1.1次)功耗的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel pipelined architecture of entropy filter

In computer vision, entropy is a measure adopted to characterize the texture information of a grayscale image, and an entropy filter is a fundamental operation used to calculate local entropy. However, this filter is computationally intensive and demands an efficient means of implementation. Additionally, with the foreseeable end of Moore’s law, there is a growing trend towards hardware offloading to increase computing power. In line with this trend, we propose a novel method for the calculation of local entropy and introduce a corresponding pipelined architecture. Under the proposed method, a sliding window of pixels undergoes three steps: sorting, adjacent difference calculation, and pipelined entropy calculation. Compared with a conventional design, implementation results on a Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC device demonstrate that our pipelined architecture can reach a maximum throughput of handling 764.526 megapixels per second while achieving \(2.4\times\) and \(2.9\times\) reductions in resource utilization and \(1.1\times\) reduction in power consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Real-Time Image Processing
Journal of Real-Time Image Processing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
6.80
自引率
6.70%
发文量
68
审稿时长
6 months
期刊介绍: Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed. Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application. It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system. The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.
期刊最新文献
High-precision real-time autonomous driving target detection based on YOLOv8 GMS-YOLO: an enhanced algorithm for water meter reading recognition in complex environments Fast rough mode decision algorithm and hardware architecture design for AV1 encoder AdaptoMixNet: detection of foreign objects on power transmission lines under severe weather conditions Mfdd: Multi-scale attention fatigue and distracted driving detector based on facial features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1