基于深度学习的输电线路绝缘体故障检测算法

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Real-Time Image Processing Pub Date : 2024-06-18 DOI:10.1007/s11554-024-01495-9
Han Wang, Qing Yang, Binlin Zhang, Dexin Gao
{"title":"基于深度学习的输电线路绝缘体故障检测算法","authors":"Han Wang, Qing Yang, Binlin Zhang, Dexin Gao","doi":"10.1007/s11554-024-01495-9","DOIUrl":null,"url":null,"abstract":"<p>Aiming at the complex background of transmission lines at the present stage, which leads to the problem of low accuracy of insulator fault detection for small targets, a deep learning-based insulator fault detection algorithm for transmission lines is proposed. First, aerial images of insulators are collected using UAVs in different scenarios to establish insulator fault datasets. After that, in order to improve the detection efficiency of the target detection algorithm, certain improvements are made on the basis of the YOLOV9 algorithm. The improved algorithm enhances the feature extraction capability of the algorithm for insulator faults at a smaller computational cost by adding the GAM attention mechanism; at the same time, in order to realize the detection efficiency of small targets for insulator faults, the generalized efficient layer aggregation network (GELAN) module is improved and a new SC-GELAN module is proposed; the original loss function is replaced by the effective intersection-over-union (EIOU) loss function to minimize the difference between the aspect ratio of the predicted frame and the real frame, thereby accelerating the convergence speed of the model. Finally, the proposed algorithm is trained and tested with other target detection algorithms on the established insulator fault dataset. The experimental results and analysis show that the algorithm in this paper ensures a certain detection speed, while the algorithmic model has a higher detection accuracy, which is more suitable for UAV fault detection of insulators on transmission lines.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning based insulator fault detection algorithm for power transmission lines\",\"authors\":\"Han Wang, Qing Yang, Binlin Zhang, Dexin Gao\",\"doi\":\"10.1007/s11554-024-01495-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aiming at the complex background of transmission lines at the present stage, which leads to the problem of low accuracy of insulator fault detection for small targets, a deep learning-based insulator fault detection algorithm for transmission lines is proposed. First, aerial images of insulators are collected using UAVs in different scenarios to establish insulator fault datasets. After that, in order to improve the detection efficiency of the target detection algorithm, certain improvements are made on the basis of the YOLOV9 algorithm. The improved algorithm enhances the feature extraction capability of the algorithm for insulator faults at a smaller computational cost by adding the GAM attention mechanism; at the same time, in order to realize the detection efficiency of small targets for insulator faults, the generalized efficient layer aggregation network (GELAN) module is improved and a new SC-GELAN module is proposed; the original loss function is replaced by the effective intersection-over-union (EIOU) loss function to minimize the difference between the aspect ratio of the predicted frame and the real frame, thereby accelerating the convergence speed of the model. Finally, the proposed algorithm is trained and tested with other target detection algorithms on the established insulator fault dataset. The experimental results and analysis show that the algorithm in this paper ensures a certain detection speed, while the algorithmic model has a higher detection accuracy, which is more suitable for UAV fault detection of insulators on transmission lines.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01495-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01495-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

针对现阶段输电线路背景复杂,导致小目标绝缘子故障检测精度低的问题,提出了一种基于深度学习的输电线路绝缘子故障检测算法。首先,利用无人机采集不同场景下的绝缘子航拍图像,建立绝缘子故障数据集。之后,为了提高目标检测算法的检测效率,在 YOLOV9 算法的基础上进行了一定的改进。改进后的算法通过增加 GAM 注意机制,以较小的计算成本提高了算法对绝缘体故障的特征提取能力;同时,为了实现对绝缘体故障小目标的检测效率,改进了广义高效层聚合网络(GELAN)模块,并提出了新的 SC-GELAN 模块;用有效交集-过联合(EIOU)损失函数代替原来的损失函数,使预测帧与真实帧的长宽比之差最小,从而加快了模型的收敛速度。最后,在已建立的绝缘子故障数据集上对所提出的算法进行了训练,并与其他目标检测算法进行了测试。实验结果和分析表明,本文算法保证了一定的检测速度,同时算法模型具有较高的检测精度,更适用于输电线路绝缘子的无人机故障检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning based insulator fault detection algorithm for power transmission lines

Aiming at the complex background of transmission lines at the present stage, which leads to the problem of low accuracy of insulator fault detection for small targets, a deep learning-based insulator fault detection algorithm for transmission lines is proposed. First, aerial images of insulators are collected using UAVs in different scenarios to establish insulator fault datasets. After that, in order to improve the detection efficiency of the target detection algorithm, certain improvements are made on the basis of the YOLOV9 algorithm. The improved algorithm enhances the feature extraction capability of the algorithm for insulator faults at a smaller computational cost by adding the GAM attention mechanism; at the same time, in order to realize the detection efficiency of small targets for insulator faults, the generalized efficient layer aggregation network (GELAN) module is improved and a new SC-GELAN module is proposed; the original loss function is replaced by the effective intersection-over-union (EIOU) loss function to minimize the difference between the aspect ratio of the predicted frame and the real frame, thereby accelerating the convergence speed of the model. Finally, the proposed algorithm is trained and tested with other target detection algorithms on the established insulator fault dataset. The experimental results and analysis show that the algorithm in this paper ensures a certain detection speed, while the algorithmic model has a higher detection accuracy, which is more suitable for UAV fault detection of insulators on transmission lines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Real-Time Image Processing
Journal of Real-Time Image Processing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
6.80
自引率
6.70%
发文量
68
审稿时长
6 months
期刊介绍: Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed. Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application. It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system. The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.
期刊最新文献
High-precision real-time autonomous driving target detection based on YOLOv8 GMS-YOLO: an enhanced algorithm for water meter reading recognition in complex environments Fast rough mode decision algorithm and hardware architecture design for AV1 encoder AdaptoMixNet: detection of foreign objects on power transmission lines under severe weather conditions Mfdd: Multi-scale attention fatigue and distracted driving detector based on facial features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1