{"title":"基于变增量自由加权矩阵的时变延迟不确定线性系统的鲁棒稳定性和 H∞$$ {H}_{\\infty }基于可变增量自由加权矩阵的时变延迟不确定线性系统的 $$ 性能评估","authors":"Dong‐Shuai Chen, Xing‐Chen Shangguan, Yong He","doi":"10.1002/asjc.3459","DOIUrl":null,"url":null,"abstract":"The problem of the robust stability and performance evaluation of time‐varying‐delayed uncertain linear systems (TVDULSs) is studied in this article. At first, to obtain a modified robust delay‐dependent condition of TVDULSs, a novel augmented Lyapunov‐Krasovskii functional (LKF) is established, and a variable‐augmented‐based free‐weighting matrices (VAFWMs) technique is tailored to evaluate the functional derivative. Compared with the existing robust stability methods, the constructed functional takes fully time delay information of the system into consideration and provides more delay‐cross terms, where the corresponding matrices are used to relax the constraints of linear matrix inequalities in the stability condition. Also, the VAFWMs method fully considers the linear relation of some delayed integral terms in the functional derivative, which avoids the usage of a quadratic order or higher order terms of the time delay. Then, an improved performance analysis criterion of TVDULSs is obtained against the disturbance on the basis of the proposed robust stability condition. The admissible maximal delay upper bounds that the uncertain linear system can tolerate are provided by proposed criterion under a given performance level. At last, two numerical examples are presented to verify the effectiveness and the superiority of the methods obtained.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"39 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust stability and H∞$$ {H}_{\\\\infty } $$ performance evaluation for time‐varying‐delayed uncertain linear systems based on variable‐augmented‐based free‐weighting matrices\",\"authors\":\"Dong‐Shuai Chen, Xing‐Chen Shangguan, Yong He\",\"doi\":\"10.1002/asjc.3459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of the robust stability and performance evaluation of time‐varying‐delayed uncertain linear systems (TVDULSs) is studied in this article. At first, to obtain a modified robust delay‐dependent condition of TVDULSs, a novel augmented Lyapunov‐Krasovskii functional (LKF) is established, and a variable‐augmented‐based free‐weighting matrices (VAFWMs) technique is tailored to evaluate the functional derivative. Compared with the existing robust stability methods, the constructed functional takes fully time delay information of the system into consideration and provides more delay‐cross terms, where the corresponding matrices are used to relax the constraints of linear matrix inequalities in the stability condition. Also, the VAFWMs method fully considers the linear relation of some delayed integral terms in the functional derivative, which avoids the usage of a quadratic order or higher order terms of the time delay. Then, an improved performance analysis criterion of TVDULSs is obtained against the disturbance on the basis of the proposed robust stability condition. The admissible maximal delay upper bounds that the uncertain linear system can tolerate are provided by proposed criterion under a given performance level. At last, two numerical examples are presented to verify the effectiveness and the superiority of the methods obtained.\",\"PeriodicalId\":55453,\"journal\":{\"name\":\"Asian Journal of Control\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/asjc.3459\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/asjc.3459","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Robust stability and H∞$$ {H}_{\infty } $$ performance evaluation for time‐varying‐delayed uncertain linear systems based on variable‐augmented‐based free‐weighting matrices
The problem of the robust stability and performance evaluation of time‐varying‐delayed uncertain linear systems (TVDULSs) is studied in this article. At first, to obtain a modified robust delay‐dependent condition of TVDULSs, a novel augmented Lyapunov‐Krasovskii functional (LKF) is established, and a variable‐augmented‐based free‐weighting matrices (VAFWMs) technique is tailored to evaluate the functional derivative. Compared with the existing robust stability methods, the constructed functional takes fully time delay information of the system into consideration and provides more delay‐cross terms, where the corresponding matrices are used to relax the constraints of linear matrix inequalities in the stability condition. Also, the VAFWMs method fully considers the linear relation of some delayed integral terms in the functional derivative, which avoids the usage of a quadratic order or higher order terms of the time delay. Then, an improved performance analysis criterion of TVDULSs is obtained against the disturbance on the basis of the proposed robust stability condition. The admissible maximal delay upper bounds that the uncertain linear system can tolerate are provided by proposed criterion under a given performance level. At last, two numerical examples are presented to verify the effectiveness and the superiority of the methods obtained.
期刊介绍:
The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application.
Published six times a year, the Journal aims to be a key platform for control communities throughout the world.
The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive.
Topics include:
The theory and design of control systems and components, encompassing:
Robust and distributed control using geometric, optimal, stochastic and nonlinear methods
Game theory and state estimation
Adaptive control, including neural networks, learning, parameter estimation
and system fault detection
Artificial intelligence, fuzzy and expert systems
Hierarchical and man-machine systems
All parts of systems engineering which consider the reliability of components and systems
Emerging application areas, such as:
Robotics
Mechatronics
Computers for computer-aided design, manufacturing, and control of
various industrial processes
Space vehicles and aircraft, ships, and traffic
Biomedical systems
National economies
Power systems
Agriculture
Natural resources.