{"title":"有缺陷灌浆的后张法混凝土梁的数值模拟,包括局部应力应变筋响应","authors":"Simone Galano, Daniele Losanno, Fulvio Parisi","doi":"10.1002/suco.202400416","DOIUrl":null,"url":null,"abstract":"In internally post‐tensioned (PT) prestressed concrete (PC) structures, the prestressing system is usually made of high‐strength steel tendons embedded within concrete through either metallic or plastic ducts filled with cement grout or grease. Construction defects or degradation phenomena may lead to insufficient covering, exposing the prestressing steel to a harmful environment, potentially compromising the durability and load‐bearing capacity of the structure. Based on experimental tests on six 1:5 scaled PT specimens, this study presents accurate numerical simulations of four‐point bending tests on girders with unbonded and partially bonded tendons having different levels of initial prestress. Nonlinear finite element analyses (FEAs) were developed to reflect the friction‐type interaction mechanism between unbonded tendons and external ducts under increasing external load up to failure. Both global and local response parameters of the girders were studied validating numerical results against experimental findings. The numerical simulations provide insights on the stress pattern of unbonded and partially bonded strands, shedding light on the lower bearing capacity of defective girders compared to those with bonded tendons. Such findings contribute to a multi‐scale assessment and decision‐making framework for existing PT girders with defective grouting and low residual prestress levels, enhancing the understanding of their structural behavior and informing maintenance or retrofitting decisions.","PeriodicalId":21988,"journal":{"name":"Structural Concrete","volume":"30 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of post‐tensioned concrete girders with defective grouting including local stress–strain tendons response\",\"authors\":\"Simone Galano, Daniele Losanno, Fulvio Parisi\",\"doi\":\"10.1002/suco.202400416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In internally post‐tensioned (PT) prestressed concrete (PC) structures, the prestressing system is usually made of high‐strength steel tendons embedded within concrete through either metallic or plastic ducts filled with cement grout or grease. Construction defects or degradation phenomena may lead to insufficient covering, exposing the prestressing steel to a harmful environment, potentially compromising the durability and load‐bearing capacity of the structure. Based on experimental tests on six 1:5 scaled PT specimens, this study presents accurate numerical simulations of four‐point bending tests on girders with unbonded and partially bonded tendons having different levels of initial prestress. Nonlinear finite element analyses (FEAs) were developed to reflect the friction‐type interaction mechanism between unbonded tendons and external ducts under increasing external load up to failure. Both global and local response parameters of the girders were studied validating numerical results against experimental findings. The numerical simulations provide insights on the stress pattern of unbonded and partially bonded strands, shedding light on the lower bearing capacity of defective girders compared to those with bonded tendons. Such findings contribute to a multi‐scale assessment and decision‐making framework for existing PT girders with defective grouting and low residual prestress levels, enhancing the understanding of their structural behavior and informing maintenance or retrofitting decisions.\",\"PeriodicalId\":21988,\"journal\":{\"name\":\"Structural Concrete\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Concrete\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/suco.202400416\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/suco.202400416","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Numerical simulation of post‐tensioned concrete girders with defective grouting including local stress–strain tendons response
In internally post‐tensioned (PT) prestressed concrete (PC) structures, the prestressing system is usually made of high‐strength steel tendons embedded within concrete through either metallic or plastic ducts filled with cement grout or grease. Construction defects or degradation phenomena may lead to insufficient covering, exposing the prestressing steel to a harmful environment, potentially compromising the durability and load‐bearing capacity of the structure. Based on experimental tests on six 1:5 scaled PT specimens, this study presents accurate numerical simulations of four‐point bending tests on girders with unbonded and partially bonded tendons having different levels of initial prestress. Nonlinear finite element analyses (FEAs) were developed to reflect the friction‐type interaction mechanism between unbonded tendons and external ducts under increasing external load up to failure. Both global and local response parameters of the girders were studied validating numerical results against experimental findings. The numerical simulations provide insights on the stress pattern of unbonded and partially bonded strands, shedding light on the lower bearing capacity of defective girders compared to those with bonded tendons. Such findings contribute to a multi‐scale assessment and decision‐making framework for existing PT girders with defective grouting and low residual prestress levels, enhancing the understanding of their structural behavior and informing maintenance or retrofitting decisions.
期刊介绍:
Structural Concrete, the official journal of the fib, provides conceptual and procedural guidance in the field of concrete construction, and features peer-reviewed papers, keynote research and industry news covering all aspects of the design, construction, performance in service and demolition of concrete structures.
Main topics:
design, construction, performance in service, conservation (assessment, maintenance, strengthening) and demolition of concrete structures
research about the behaviour of concrete structures
development of design methods
fib Model Code
sustainability of concrete structures.