基于计算智能的分类系统,用于诊断精神活性物质使用者的记忆损伤

Chaoyang Zhu
{"title":"基于计算智能的分类系统,用于诊断精神活性物质使用者的记忆损伤","authors":"Chaoyang Zhu","doi":"10.1186/s13677-024-00675-z","DOIUrl":null,"url":null,"abstract":"Computational intelligence techniques have emerged as a promising approach for diagnosing various medical conditions, including memory impairment. Increased abuse of psychoactive drugs poses a global public health burden, as repeated exposure to these substances can cause neurodegeneration, premature aging, and negatively affect memory impairment. Many studies in the literature relied on statistical studies, but they remained inaccurate. Some studies relied on physical data because the time factor was not considered, until Artificial Intelligence (AI) techniques came along that proved their worth in this diagnosis. The variable deep neural network method was used to adapt to the intermediate results and re-process the intermediate in case the result is undesirable. Computational intelligence was used in this study to classify a brain image from MRI or CT scans and to show the effectiveness of the dose ratio on health with treatment time, and to diagnose memory impairment in users of psychoactive substances. Understanding the neurotoxic profiles of psychoactive substances and the underlying pathways is hypothesized to be of great importance in improving the risk assessment and treatment of substance use disorders. The results proved the worth of the proposed method in terms of the accuracy of recognition rate as well as the possibility of diagnosis. It can be concluded that the diagnostic efficiency is increased by increasing the number of hidden layers in the neural network and controlling the weights and variables that control the deep learning algorithm. Thus, we conclude that good classification in this field may save human life or early detection of memory impairment.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational intelligence-based classification system for the diagnosis of memory impairment in psychoactive substance users\",\"authors\":\"Chaoyang Zhu\",\"doi\":\"10.1186/s13677-024-00675-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational intelligence techniques have emerged as a promising approach for diagnosing various medical conditions, including memory impairment. Increased abuse of psychoactive drugs poses a global public health burden, as repeated exposure to these substances can cause neurodegeneration, premature aging, and negatively affect memory impairment. Many studies in the literature relied on statistical studies, but they remained inaccurate. Some studies relied on physical data because the time factor was not considered, until Artificial Intelligence (AI) techniques came along that proved their worth in this diagnosis. The variable deep neural network method was used to adapt to the intermediate results and re-process the intermediate in case the result is undesirable. Computational intelligence was used in this study to classify a brain image from MRI or CT scans and to show the effectiveness of the dose ratio on health with treatment time, and to diagnose memory impairment in users of psychoactive substances. Understanding the neurotoxic profiles of psychoactive substances and the underlying pathways is hypothesized to be of great importance in improving the risk assessment and treatment of substance use disorders. The results proved the worth of the proposed method in terms of the accuracy of recognition rate as well as the possibility of diagnosis. It can be concluded that the diagnostic efficiency is increased by increasing the number of hidden layers in the neural network and controlling the weights and variables that control the deep learning algorithm. Thus, we conclude that good classification in this field may save human life or early detection of memory impairment.\",\"PeriodicalId\":501257,\"journal\":{\"name\":\"Journal of Cloud Computing\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13677-024-00675-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-024-00675-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算智能技术已成为诊断包括记忆损伤在内的各种医疗状况的一种很有前途的方法。精神活性药物滥用的增加给全球公共卫生造成了负担,因为反复接触这些物质会导致神经变性、过早衰老,并对记忆损伤产生负面影响。文献中的许多研究依赖于统计研究,但这些研究仍然不准确。一些研究依赖于物理数据,因为没有考虑时间因素,直到人工智能(AI)技术的出现,证明了其在这一诊断中的价值。可变深度神经网络方法用于适应中间结果,并在结果不理想时重新处理中间结果。在这项研究中,计算智能被用于对核磁共振成像或 CT 扫描的大脑图像进行分类,显示剂量比对健康的影响与治疗时间的关系,以及诊断精神活性物质使用者的记忆损伤。据推测,了解精神活性物质的神经毒性特征及其潜在途径对于改善药物使用障碍的风险评估和治疗具有重要意义。研究结果表明,从识别率的准确性和诊断的可能性来看,所提出的方法是有价值的。可以得出的结论是,通过增加神经网络的隐藏层数以及控制深度学习算法的权重和变量,可以提高诊断效率。因此,我们得出结论,在这一领域,良好的分类可以挽救人的生命或早期发现记忆障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational intelligence-based classification system for the diagnosis of memory impairment in psychoactive substance users
Computational intelligence techniques have emerged as a promising approach for diagnosing various medical conditions, including memory impairment. Increased abuse of psychoactive drugs poses a global public health burden, as repeated exposure to these substances can cause neurodegeneration, premature aging, and negatively affect memory impairment. Many studies in the literature relied on statistical studies, but they remained inaccurate. Some studies relied on physical data because the time factor was not considered, until Artificial Intelligence (AI) techniques came along that proved their worth in this diagnosis. The variable deep neural network method was used to adapt to the intermediate results and re-process the intermediate in case the result is undesirable. Computational intelligence was used in this study to classify a brain image from MRI or CT scans and to show the effectiveness of the dose ratio on health with treatment time, and to diagnose memory impairment in users of psychoactive substances. Understanding the neurotoxic profiles of psychoactive substances and the underlying pathways is hypothesized to be of great importance in improving the risk assessment and treatment of substance use disorders. The results proved the worth of the proposed method in terms of the accuracy of recognition rate as well as the possibility of diagnosis. It can be concluded that the diagnostic efficiency is increased by increasing the number of hidden layers in the neural network and controlling the weights and variables that control the deep learning algorithm. Thus, we conclude that good classification in this field may save human life or early detection of memory impairment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cost-efficient content distribution optimization model for fog-based content delivery networks Toward security quantification of serverless computing SMedIR: secure medical image retrieval framework with ConvNeXt-based indexing and searchable encryption in the cloud A trusted IoT data sharing method based on secure multi-party computation Wind power prediction method based on cloud computing and data privacy protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1