利用空间嵌入统计绘制新兴属性地图EMUSES

Chris Foulon, Marcela Ovando-Tellez, Lia Talozzi, Maurizio Corbetta, Anna Matsulevits, Michel Thiebaut de Schotten
{"title":"利用空间嵌入统计绘制新兴属性地图EMUSES","authors":"Chris Foulon, Marcela Ovando-Tellez, Lia Talozzi, Maurizio Corbetta, Anna Matsulevits, Michel Thiebaut de Schotten","doi":"arxiv-2406.14309","DOIUrl":null,"url":null,"abstract":"Understanding complex phenomena often requires analyzing high-dimensional\ndata to uncover emergent properties that arise from multifactorial\ninteractions. Here, we present EMUSES (Emerging-properties Mapping Using\nSpatial Embedding Statistics), an innovative approach employing Uniform\nManifold Approximation and Projection (UMAP) to create high-dimensional\nembeddings that reveal latent structures within data. EMUSES facilitates the\nexploration and prediction of emergent properties by statistically analyzing\nthese latent spaces. Using three distinct datasets--a handwritten digits\ndataset from the National Institute of Standards and Technology (NIST, E.\nAlpaydin, 1998), the Chicago Face Database (Ma et al., 2015), and brain\ndisconnection data post-stroke (Talozzi et al., 2023)--we demonstrate EMUSES'\neffectiveness in detecting and interpreting emergent properties. Our method not\nonly predicts outcomes with high accuracy but also provides clear\nvisualizations and statistical insights into the underlying interactions within\nthe data. By bridging the gap between predictive accuracy and interpretability,\nEMUSES offers researchers a powerful tool to understand the multifactorial\norigins of complex phenomena.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging-properties Mapping Using Spatial Embedding Statistics: EMUSES\",\"authors\":\"Chris Foulon, Marcela Ovando-Tellez, Lia Talozzi, Maurizio Corbetta, Anna Matsulevits, Michel Thiebaut de Schotten\",\"doi\":\"arxiv-2406.14309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding complex phenomena often requires analyzing high-dimensional\\ndata to uncover emergent properties that arise from multifactorial\\ninteractions. Here, we present EMUSES (Emerging-properties Mapping Using\\nSpatial Embedding Statistics), an innovative approach employing Uniform\\nManifold Approximation and Projection (UMAP) to create high-dimensional\\nembeddings that reveal latent structures within data. EMUSES facilitates the\\nexploration and prediction of emergent properties by statistically analyzing\\nthese latent spaces. Using three distinct datasets--a handwritten digits\\ndataset from the National Institute of Standards and Technology (NIST, E.\\nAlpaydin, 1998), the Chicago Face Database (Ma et al., 2015), and brain\\ndisconnection data post-stroke (Talozzi et al., 2023)--we demonstrate EMUSES'\\neffectiveness in detecting and interpreting emergent properties. Our method not\\nonly predicts outcomes with high accuracy but also provides clear\\nvisualizations and statistical insights into the underlying interactions within\\nthe data. By bridging the gap between predictive accuracy and interpretability,\\nEMUSES offers researchers a powerful tool to understand the multifactorial\\norigins of complex phenomena.\",\"PeriodicalId\":501168,\"journal\":{\"name\":\"arXiv - CS - Emerging Technologies\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.14309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要理解复杂的现象,往往需要分析高维数据,以发现多因素相互作用产生的新兴特性。在这里,我们提出了 EMUSES(使用空间嵌入统计的新兴属性映射),这是一种创新方法,它采用统一平面逼近和投影(UMAP)来创建高维嵌入,从而揭示数据中的潜在结构。EMUSES 通过对这些潜在空间进行统计分析,促进了对新兴属性的探索和预测。我们使用了三个不同的数据集--美国国家标准与技术研究院(NIST,E.Alpaydin,1998)的手写数字数据集、芝加哥人脸数据库(Ma 等人,2015)以及中风后的脑血管连接数据(Talozzi 等人,2023)--证明了 EMUSES 在检测和解释新兴属性方面的有效性。我们的方法不仅能高精度地预测结果,还能提供清晰的可视化效果,并通过统计分析深入了解数据中的潜在交互作用。通过缩小预测准确性和可解释性之间的差距,EMUSES 为研究人员理解复杂现象的多因素起源提供了强有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emerging-properties Mapping Using Spatial Embedding Statistics: EMUSES
Understanding complex phenomena often requires analyzing high-dimensional data to uncover emergent properties that arise from multifactorial interactions. Here, we present EMUSES (Emerging-properties Mapping Using Spatial Embedding Statistics), an innovative approach employing Uniform Manifold Approximation and Projection (UMAP) to create high-dimensional embeddings that reveal latent structures within data. EMUSES facilitates the exploration and prediction of emergent properties by statistically analyzing these latent spaces. Using three distinct datasets--a handwritten digits dataset from the National Institute of Standards and Technology (NIST, E. Alpaydin, 1998), the Chicago Face Database (Ma et al., 2015), and brain disconnection data post-stroke (Talozzi et al., 2023)--we demonstrate EMUSES' effectiveness in detecting and interpreting emergent properties. Our method not only predicts outcomes with high accuracy but also provides clear visualizations and statistical insights into the underlying interactions within the data. By bridging the gap between predictive accuracy and interpretability, EMUSES offers researchers a powerful tool to understand the multifactorial origins of complex phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1